AradhyaAlva
commited on
Commit
·
1ba809f
1
Parent(s):
acd3d14
initial
Browse files- app.py +118 -50
- requirements.txt +11 -1
app.py
CHANGED
@@ -1,64 +1,132 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
"""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from peft import PeftModel
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import torch
|
6 |
+
import cohere
|
7 |
+
from pinecone import Pinecone, ServerlessSpec
|
8 |
+
import os
|
9 |
|
10 |
+
# Load the environment variables
|
11 |
+
load_dotenv()
|
12 |
+
# Model configuration
|
13 |
+
max_seq_length = 2048
|
14 |
+
dtype = None
|
15 |
+
load_in_4bit = True
|
16 |
+
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
|
17 |
|
18 |
+
class ModelInterface:
|
19 |
+
def __init__(self):
|
20 |
+
# Model names and paths
|
21 |
+
model_name = "Aradhya15/Mistral7b_hypertuned" # Replace with your Hugging Face model path
|
22 |
+
base_model_name = "mistralai/Mistral-7B-v0.1"
|
23 |
|
24 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Load the tokenizer
|
27 |
+
self.tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
28 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
29 |
+
|
30 |
+
# Load the PEFT adapter
|
31 |
+
self.model = PeftModel.from_pretrained(base_model, model_name)
|
32 |
+
if torch.cuda.is_available():
|
33 |
+
print("GPU is available and ready to use:", torch.cuda.get_device_name(0))
|
34 |
+
else:
|
35 |
+
print("GPU not detected; using CPU.")
|
36 |
+
# Check for GPU availability
|
37 |
+
if torch.cuda.is_available():
|
38 |
+
device = torch.device("cuda") # Use the first available GPU
|
39 |
+
else:
|
40 |
+
device = torch.device("cpu") # Fallback to CPU
|
41 |
|
42 |
+
# Convert the model to half-precision (optional)
|
43 |
+
self.model = self.model.half()
|
44 |
|
45 |
+
# Move the model to the chosen device (GPU or CPU)
|
46 |
+
self.model = self.model.to(device)
|
47 |
|
48 |
+
print(f"Model is moved to {device}")
|
49 |
+
|
50 |
+
# Initialize Cohere
|
51 |
+
self.cohere_client = cohere.Client(api_key=os.getenv("COHERE_API_KEY"))
|
52 |
+
|
53 |
+
# Initialize Pinecone with your API key
|
54 |
+
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
|
55 |
+
self.index = pc.Index("cohere-pinecone-tree")
|
56 |
|
57 |
+
def generate_response(self, query):
|
58 |
+
try:
|
59 |
+
# Generate query embedding
|
60 |
+
response = self.cohere_client.embed(
|
61 |
+
texts=[query],
|
62 |
+
model="embed-english-light-v2.0"
|
63 |
+
)
|
64 |
+
query_embedding = response.embeddings[0]
|
65 |
|
66 |
+
# Retrieve documents
|
67 |
+
results = self.index.query(
|
68 |
+
vector=query_embedding,
|
69 |
+
top_k=5,
|
70 |
+
include_metadata=True
|
71 |
+
)
|
72 |
+
retrieved_context = "\n".join(
|
73 |
+
[result["metadata"]["text"] for result in results["matches"]]
|
74 |
+
)
|
75 |
|
76 |
+
# Prepare input for model
|
77 |
+
messages = [
|
78 |
+
{"role": "system", "content": f"Context: {retrieved_context}"},
|
79 |
+
{"role": "user", "content": query},
|
80 |
+
]
|
81 |
+
|
82 |
+
# Tokenize input
|
83 |
+
inputs = self.tokenizer(
|
84 |
+
f"Context: {retrieved_context}\nUser: {query}",
|
85 |
+
return_tensors="pt",
|
86 |
+
truncation=True,
|
87 |
+
padding=True,
|
88 |
+
max_length=max_seq_length
|
89 |
+
).to("cuda")
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
# Generate response from model
|
92 |
+
outputs = self.model.generate(
|
93 |
+
inputs["input_ids"],
|
94 |
+
max_new_tokens=64,
|
95 |
+
temperature=0.3,
|
96 |
+
top_p=0.9,
|
97 |
+
repetition_penalty=1.2
|
98 |
+
)
|
99 |
+
|
100 |
+
response_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
101 |
+
return response_text
|
102 |
|
103 |
+
except Exception as e:
|
104 |
+
return f"Error generating response: {str(e)}"
|
105 |
+
|
106 |
+
# Create Gradio interface
|
107 |
+
def create_interface():
|
108 |
+
interface = ModelInterface()
|
109 |
+
|
110 |
+
def predict(message):
|
111 |
+
return interface.generate_response(message)
|
112 |
+
|
113 |
+
iface = gr.Interface(
|
114 |
+
fn=predict,
|
115 |
+
inputs=gr.Textbox(label="Enter your question"),
|
116 |
+
outputs=gr.Textbox(label="Response"),
|
117 |
+
title="RAG-Enhanced LLM Assistant",
|
118 |
+
description="Ask a question and get a response enhanced with retrieved context.",
|
119 |
+
examples=[["What are the best practices for tree planting?"], ["How can I improve soil quality in my garden?"]]
|
120 |
+
)
|
121 |
+
|
122 |
+
return iface
|
123 |
+
|
124 |
+
# Launch the interface
|
125 |
if __name__ == "__main__":
|
126 |
+
iface = create_interface()
|
127 |
+
iface.launch()
|
128 |
+
|
129 |
+
# import torch
|
130 |
+
# print(torch.__version__)
|
131 |
+
# print(torch.cuda.is_available())
|
132 |
+
# print(torch.version.cuda) # This should show "12.6" or compatible
|
requirements.txt
CHANGED
@@ -1 +1,11 @@
|
|
1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.25.2
|
2 |
+
gradio
|
3 |
+
torch>=2.0.0
|
4 |
+
transformers>=4.36.0
|
5 |
+
unsloth
|
6 |
+
cohere
|
7 |
+
pinecone-client
|
8 |
+
accelerate
|
9 |
+
bitsandbytes
|
10 |
+
peft
|
11 |
+
python-dotenv
|