Spaces:
Sleeping
Sleeping
michaelapplydesign
commited on
Commit
·
26987c4
1
Parent(s):
db1433d
up 3
Browse files- app.py +11 -6
- models.py +4 -3
- preprocessing.py +5 -4
app.py
CHANGED
@@ -3,9 +3,9 @@ import io
|
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
|
6 |
-
|
7 |
from models import make_image_controlnet, make_inpainting
|
8 |
-
from preprocessing import
|
9 |
|
10 |
def image_to_byte_array(image: Image) -> bytes:
|
11 |
# BytesIO is a fake file stored in memory
|
@@ -20,15 +20,19 @@ def predict(input_img1,
|
|
20 |
input_img2,
|
21 |
positive_prompt,
|
22 |
negative_prompt,
|
23 |
-
num_of_images
|
|
|
24 |
):
|
25 |
|
26 |
print("predict")
|
27 |
# input_img1 = Image.fromarray(input_img1)
|
28 |
# input_img2 = Image.fromarray(input_img2)
|
29 |
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
canvas_mask = np.array(input_img2)
|
34 |
mask = get_mask(canvas_mask)
|
@@ -56,7 +60,8 @@ app = gr.Interface(
|
|
56 |
gr.Image(label="mask", sources=['upload'], type="pil"),
|
57 |
gr.Textbox(label="positive_prompt"),
|
58 |
gr.Textbox(label="negative_prompt"),
|
59 |
-
gr.Number(label="num_of_images")
|
|
|
60 |
],
|
61 |
outputs= [
|
62 |
gr.Image(label="resp0"),
|
|
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
|
6 |
+
import config
|
7 |
from models import make_image_controlnet, make_inpainting
|
8 |
+
from preprocessing import get_mask
|
9 |
|
10 |
def image_to_byte_array(image: Image) -> bytes:
|
11 |
# BytesIO is a fake file stored in memory
|
|
|
20 |
input_img2,
|
21 |
positive_prompt,
|
22 |
negative_prompt,
|
23 |
+
num_of_images,
|
24 |
+
resolution
|
25 |
):
|
26 |
|
27 |
print("predict")
|
28 |
# input_img1 = Image.fromarray(input_img1)
|
29 |
# input_img2 = Image.fromarray(input_img2)
|
30 |
|
31 |
+
config.WIDTH = resolution
|
32 |
+
config.HEIGHT = resolution
|
33 |
+
|
34 |
+
input_img1 = input_img1.resize((config.WIDTH, config.HEIGHT))
|
35 |
+
input_img2 = input_img2.resize((config.WIDTH, config.HEIGHT))
|
36 |
|
37 |
canvas_mask = np.array(input_img2)
|
38 |
mask = get_mask(canvas_mask)
|
|
|
60 |
gr.Image(label="mask", sources=['upload'], type="pil"),
|
61 |
gr.Textbox(label="positive_prompt"),
|
62 |
gr.Textbox(label="negative_prompt"),
|
63 |
+
gr.Number(label="num_of_images"),
|
64 |
+
gr.Number(label="resolution")
|
65 |
],
|
66 |
outputs= [
|
67 |
gr.Image(label="resp0"),
|
models.py
CHANGED
@@ -69,7 +69,8 @@ def make_image_controlnet(image: np.ndarray,
|
|
69 |
def make_inpainting(positive_prompt: str,
|
70 |
image: Image,
|
71 |
mask_image: np.ndarray,
|
72 |
-
negative_prompt: str = ""
|
|
|
73 |
"""Method to make inpainting
|
74 |
Args:
|
75 |
positive_prompt (str): positive prompt string
|
@@ -90,8 +91,8 @@ def make_inpainting(positive_prompt: str,
|
|
90 |
prompt=positive_prompt,
|
91 |
negative_prompt=negative_prompt,
|
92 |
num_inference_steps=50,
|
93 |
-
height=
|
94 |
-
width=
|
95 |
)
|
96 |
print("RESP !!!!",resp)
|
97 |
generated_image = resp.images[0]
|
|
|
69 |
def make_inpainting(positive_prompt: str,
|
70 |
image: Image,
|
71 |
mask_image: np.ndarray,
|
72 |
+
negative_prompt: str = "",
|
73 |
+
rezolution:int=512) -> List[Image.Image]:
|
74 |
"""Method to make inpainting
|
75 |
Args:
|
76 |
positive_prompt (str): positive prompt string
|
|
|
91 |
prompt=positive_prompt,
|
92 |
negative_prompt=negative_prompt,
|
93 |
num_inference_steps=50,
|
94 |
+
height=rezolution,
|
95 |
+
width=rezolution,
|
96 |
)
|
97 |
print("RESP !!!!",resp)
|
98 |
generated_image = resp.images[0]
|
preprocessing.py
CHANGED
@@ -6,7 +6,8 @@ import numpy as np
|
|
6 |
from PIL import Image, ImageFilter
|
7 |
import streamlit as st
|
8 |
|
9 |
-
|
|
|
10 |
# from enhance_config import ENHANCE_SETTINGS
|
11 |
|
12 |
LOGGING = logging.getLogger(__name__)
|
@@ -35,7 +36,7 @@ def preprocess_seg_mask(canvas_seg, real_seg: Image.Image = None) -> Tuple[np.nd
|
|
35 |
unique_colors = [color for color in unique_colors if np.sum(
|
36 |
np.all(image_seg == color, axis=-1)) > 100]
|
37 |
|
38 |
-
unique_colors_exact = [color for color in unique_colors if color in COLOR_RGB]
|
39 |
|
40 |
if real_seg is not None:
|
41 |
overlay_seg = np.array(real_seg)
|
@@ -74,9 +75,9 @@ def get_image() -> np.ndarray:
|
|
74 |
if 'initial_image' in st.session_state and st.session_state['initial_image'] is not None:
|
75 |
initial_image = st.session_state['initial_image']
|
76 |
if isinstance(initial_image, Image.Image):
|
77 |
-
return np.array(initial_image.resize((WIDTH, HEIGHT)))
|
78 |
else:
|
79 |
-
return np.array(Image.fromarray(initial_image).resize((WIDTH, HEIGHT)))
|
80 |
else:
|
81 |
return None
|
82 |
|
|
|
6 |
from PIL import Image, ImageFilter
|
7 |
import streamlit as st
|
8 |
|
9 |
+
import config
|
10 |
+
|
11 |
# from enhance_config import ENHANCE_SETTINGS
|
12 |
|
13 |
LOGGING = logging.getLogger(__name__)
|
|
|
36 |
unique_colors = [color for color in unique_colors if np.sum(
|
37 |
np.all(image_seg == color, axis=-1)) > 100]
|
38 |
|
39 |
+
unique_colors_exact = [color for color in unique_colors if color in config.COLOR_RGB]
|
40 |
|
41 |
if real_seg is not None:
|
42 |
overlay_seg = np.array(real_seg)
|
|
|
75 |
if 'initial_image' in st.session_state and st.session_state['initial_image'] is not None:
|
76 |
initial_image = st.session_state['initial_image']
|
77 |
if isinstance(initial_image, Image.Image):
|
78 |
+
return np.array(initial_image.resize((config.WIDTH, config.HEIGHT)))
|
79 |
else:
|
80 |
+
return np.array(Image.fromarray(initial_image).resize((config.WIDTH, config.HEIGHT)))
|
81 |
else:
|
82 |
return None
|
83 |
|