michaelapplydesign commited on
Commit
26987c4
·
1 Parent(s): db1433d
Files changed (3) hide show
  1. app.py +11 -6
  2. models.py +4 -3
  3. preprocessing.py +5 -4
app.py CHANGED
@@ -3,9 +3,9 @@ import io
3
  from PIL import Image
4
  import numpy as np
5
 
6
- from config import WIDTH, HEIGHT
7
  from models import make_image_controlnet, make_inpainting
8
- from preprocessing import preprocess_seg_mask, get_image, get_mask
9
 
10
  def image_to_byte_array(image: Image) -> bytes:
11
  # BytesIO is a fake file stored in memory
@@ -20,15 +20,19 @@ def predict(input_img1,
20
  input_img2,
21
  positive_prompt,
22
  negative_prompt,
23
- num_of_images
 
24
  ):
25
 
26
  print("predict")
27
  # input_img1 = Image.fromarray(input_img1)
28
  # input_img2 = Image.fromarray(input_img2)
29
 
30
- input_img1 = input_img1.resize((WIDTH, HEIGHT))
31
- input_img2 = input_img2.resize((WIDTH, WIDTH))
 
 
 
32
 
33
  canvas_mask = np.array(input_img2)
34
  mask = get_mask(canvas_mask)
@@ -56,7 +60,8 @@ app = gr.Interface(
56
  gr.Image(label="mask", sources=['upload'], type="pil"),
57
  gr.Textbox(label="positive_prompt"),
58
  gr.Textbox(label="negative_prompt"),
59
- gr.Number(label="num_of_images")
 
60
  ],
61
  outputs= [
62
  gr.Image(label="resp0"),
 
3
  from PIL import Image
4
  import numpy as np
5
 
6
+ import config
7
  from models import make_image_controlnet, make_inpainting
8
+ from preprocessing import get_mask
9
 
10
  def image_to_byte_array(image: Image) -> bytes:
11
  # BytesIO is a fake file stored in memory
 
20
  input_img2,
21
  positive_prompt,
22
  negative_prompt,
23
+ num_of_images,
24
+ resolution
25
  ):
26
 
27
  print("predict")
28
  # input_img1 = Image.fromarray(input_img1)
29
  # input_img2 = Image.fromarray(input_img2)
30
 
31
+ config.WIDTH = resolution
32
+ config.HEIGHT = resolution
33
+
34
+ input_img1 = input_img1.resize((config.WIDTH, config.HEIGHT))
35
+ input_img2 = input_img2.resize((config.WIDTH, config.HEIGHT))
36
 
37
  canvas_mask = np.array(input_img2)
38
  mask = get_mask(canvas_mask)
 
60
  gr.Image(label="mask", sources=['upload'], type="pil"),
61
  gr.Textbox(label="positive_prompt"),
62
  gr.Textbox(label="negative_prompt"),
63
+ gr.Number(label="num_of_images"),
64
+ gr.Number(label="resolution")
65
  ],
66
  outputs= [
67
  gr.Image(label="resp0"),
models.py CHANGED
@@ -69,7 +69,8 @@ def make_image_controlnet(image: np.ndarray,
69
  def make_inpainting(positive_prompt: str,
70
  image: Image,
71
  mask_image: np.ndarray,
72
- negative_prompt: str = "") -> List[Image.Image]:
 
73
  """Method to make inpainting
74
  Args:
75
  positive_prompt (str): positive prompt string
@@ -90,8 +91,8 @@ def make_inpainting(positive_prompt: str,
90
  prompt=positive_prompt,
91
  negative_prompt=negative_prompt,
92
  num_inference_steps=50,
93
- height=HEIGHT,
94
- width=WIDTH,
95
  )
96
  print("RESP !!!!",resp)
97
  generated_image = resp.images[0]
 
69
  def make_inpainting(positive_prompt: str,
70
  image: Image,
71
  mask_image: np.ndarray,
72
+ negative_prompt: str = "",
73
+ rezolution:int=512) -> List[Image.Image]:
74
  """Method to make inpainting
75
  Args:
76
  positive_prompt (str): positive prompt string
 
91
  prompt=positive_prompt,
92
  negative_prompt=negative_prompt,
93
  num_inference_steps=50,
94
+ height=rezolution,
95
+ width=rezolution,
96
  )
97
  print("RESP !!!!",resp)
98
  generated_image = resp.images[0]
preprocessing.py CHANGED
@@ -6,7 +6,8 @@ import numpy as np
6
  from PIL import Image, ImageFilter
7
  import streamlit as st
8
 
9
- from config import COLOR_RGB, WIDTH, HEIGHT
 
10
  # from enhance_config import ENHANCE_SETTINGS
11
 
12
  LOGGING = logging.getLogger(__name__)
@@ -35,7 +36,7 @@ def preprocess_seg_mask(canvas_seg, real_seg: Image.Image = None) -> Tuple[np.nd
35
  unique_colors = [color for color in unique_colors if np.sum(
36
  np.all(image_seg == color, axis=-1)) > 100]
37
 
38
- unique_colors_exact = [color for color in unique_colors if color in COLOR_RGB]
39
 
40
  if real_seg is not None:
41
  overlay_seg = np.array(real_seg)
@@ -74,9 +75,9 @@ def get_image() -> np.ndarray:
74
  if 'initial_image' in st.session_state and st.session_state['initial_image'] is not None:
75
  initial_image = st.session_state['initial_image']
76
  if isinstance(initial_image, Image.Image):
77
- return np.array(initial_image.resize((WIDTH, HEIGHT)))
78
  else:
79
- return np.array(Image.fromarray(initial_image).resize((WIDTH, HEIGHT)))
80
  else:
81
  return None
82
 
 
6
  from PIL import Image, ImageFilter
7
  import streamlit as st
8
 
9
+ import config
10
+
11
  # from enhance_config import ENHANCE_SETTINGS
12
 
13
  LOGGING = logging.getLogger(__name__)
 
36
  unique_colors = [color for color in unique_colors if np.sum(
37
  np.all(image_seg == color, axis=-1)) > 100]
38
 
39
+ unique_colors_exact = [color for color in unique_colors if color in config.COLOR_RGB]
40
 
41
  if real_seg is not None:
42
  overlay_seg = np.array(real_seg)
 
75
  if 'initial_image' in st.session_state and st.session_state['initial_image'] is not None:
76
  initial_image = st.session_state['initial_image']
77
  if isinstance(initial_image, Image.Image):
78
+ return np.array(initial_image.resize((config.WIDTH, config.HEIGHT)))
79
  else:
80
+ return np.array(Image.fromarray(initial_image).resize((config.WIDTH, config.HEIGHT)))
81
  else:
82
  return None
83