Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import numpy as np
|
3 |
+
from sentence_transformers import SentenceTransformer, util
|
4 |
+
import gradio as gr
|
5 |
+
import requests
|
6 |
+
from bs4 import BeautifulSoup
|
7 |
+
import time
|
8 |
+
import torch
|
9 |
+
import traceback
|
10 |
+
|
11 |
+
# Extended sample data with business analyst courses
|
12 |
+
SAMPLE_COURSES = [
|
13 |
+
{
|
14 |
+
"title": "Business Analysis and Process Management Specialization",
|
15 |
+
"description": "Learn core business analysis skills, process mapping, and improvement techniques for organizational efficiency.",
|
16 |
+
"link": "https://www.coursera.org/specializations/business-analysis-process-management",
|
17 |
+
"source": "coursera"
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"title": "Business Analytics Fundamentals",
|
21 |
+
"description": "Master data-driven decision making, Excel, SQL, and visualization tools for business analysis.",
|
22 |
+
"link": "https://www.udemy.com/course/business-analytics-fundamentals",
|
23 |
+
"source": "udemy"
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"title": "Agile Business Analysis Professional",
|
27 |
+
"description": "Learn agile methodologies, user stories, and modern BA practices for software projects.",
|
28 |
+
"link": "https://www.coursera.org/professional-certificates/agile-business-analysis",
|
29 |
+
"source": "coursera"
|
30 |
+
},
|
31 |
+
# Original sample courses...
|
32 |
+
{
|
33 |
+
"title": "Python Programming for Beginners",
|
34 |
+
"description": "Learn Python from scratch. Covers basic concepts, data structures, and programming fundamentals.",
|
35 |
+
"link": "https://www.udemy.com/course/python-for-beginners",
|
36 |
+
"source": "udemy"
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"title": "Machine Learning Specialization",
|
40 |
+
"description": "Comprehensive machine learning course covering supervised learning, neural networks, and practical ML projects.",
|
41 |
+
"link": "https://www.coursera.org/specializations/machine-learning",
|
42 |
+
"source": "coursera"
|
43 |
+
}
|
44 |
+
]
|
45 |
+
|
46 |
+
def scrape_courses(query):
|
47 |
+
"""
|
48 |
+
Scrape courses based on search query from multiple sources
|
49 |
+
"""
|
50 |
+
courses = []
|
51 |
+
|
52 |
+
# Udemy API endpoint (you would need to register for API access)
|
53 |
+
udemy_url = f"https://www.udemy.com/api-2.0/courses/?search={query}&price=price-free"
|
54 |
+
|
55 |
+
# Coursera API endpoint (you would need to register for API access)
|
56 |
+
coursera_url = f"https://api.coursera.org/api/courses.v1?q=search&query={query}&includes=free"
|
57 |
+
|
58 |
+
try:
|
59 |
+
# Here you would implement the actual API calls
|
60 |
+
# For now, we'll filter the sample courses based on the query
|
61 |
+
query_terms = query.lower().split()
|
62 |
+
for course in SAMPLE_COURSES:
|
63 |
+
if any(term in course['title'].lower() or term in course['description'].lower()
|
64 |
+
for term in query_terms):
|
65 |
+
courses.append(course)
|
66 |
+
|
67 |
+
return courses
|
68 |
+
except Exception as e:
|
69 |
+
print(f"Error scraping courses: {e}")
|
70 |
+
return []
|
71 |
+
|
72 |
+
def search_courses(query):
|
73 |
+
if not query.strip():
|
74 |
+
return "Please enter a search query."
|
75 |
+
|
76 |
+
try:
|
77 |
+
# Get relevant courses based on the query
|
78 |
+
relevant_courses = scrape_courses(query)
|
79 |
+
|
80 |
+
if not relevant_courses:
|
81 |
+
return "No courses found for your search query."
|
82 |
+
|
83 |
+
# Initialize the model
|
84 |
+
device = torch.device('cpu')
|
85 |
+
model = SentenceTransformer("all-MiniLM-L6-v2")
|
86 |
+
model = model.to(device)
|
87 |
+
|
88 |
+
# Generate embeddings
|
89 |
+
course_descriptions = [f"{course['title']} {course['description']}" for course in relevant_courses]
|
90 |
+
course_embeddings = model.encode(course_descriptions, convert_to_tensor=True)
|
91 |
+
|
92 |
+
# Generate query embedding
|
93 |
+
query_embedding = model.encode(f"course about {query}", convert_to_tensor=True)
|
94 |
+
|
95 |
+
# Calculate similarities
|
96 |
+
similarities = util.pytorch_cos_sim(query_embedding, course_embeddings)[0]
|
97 |
+
top_indices = np.argsort((-similarities).numpy())[:5]
|
98 |
+
|
99 |
+
results = []
|
100 |
+
for idx in top_indices:
|
101 |
+
similarity_score = similarities[idx].item()
|
102 |
+
course = relevant_courses[idx]
|
103 |
+
results.append({
|
104 |
+
"Title": course["title"],
|
105 |
+
"Description": course["description"],
|
106 |
+
"Link": course["link"],
|
107 |
+
"Source": course["source"],
|
108 |
+
"Relevance": f"{similarity_score:.2%}"
|
109 |
+
})
|
110 |
+
|
111 |
+
return results
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Search error: {str(e)}")
|
114 |
+
traceback.print_exc()
|
115 |
+
return []
|
116 |
+
|
117 |
+
def search_interface(query):
|
118 |
+
try:
|
119 |
+
print(f"\nSearching for: {query}")
|
120 |
+
results = search_courses(query)
|
121 |
+
|
122 |
+
if isinstance(results, str):
|
123 |
+
return results
|
124 |
+
if not results:
|
125 |
+
return "No matching courses found. Please try a different search term."
|
126 |
+
|
127 |
+
display_text = "\n\n".join(
|
128 |
+
[f"**Title**: {result['Title']}\n\n**Description**: {result['Description']}\n\n**Source:** {result['Source']}\n\n**Relevance:** {result['Relevance']}\n\n[Go to course]({result['Link']})"
|
129 |
+
for result in results]
|
130 |
+
)
|
131 |
+
return display_text
|
132 |
+
except Exception as e:
|
133 |
+
traceback.print_exc()
|
134 |
+
return f"An error occurred: {str(e)}"
|
135 |
+
|
136 |
+
# Create and launch the Gradio interface
|
137 |
+
iface = gr.Interface(
|
138 |
+
fn=search_interface,
|
139 |
+
inputs="text",
|
140 |
+
outputs="markdown",
|
141 |
+
title="Free Course Search Engine",
|
142 |
+
description="Enter a topic or keywords to find relevant free courses from Udemy and Coursera.",
|
143 |
+
examples=["Python", "Business Analyst", "Data Science", "Web Development"]
|
144 |
+
)
|
145 |
+
|
146 |
+
iface.launch(share=True)
|