import gradio as gr from fastai.vision.all import * from efficientnet_pytorch import EfficientNet learn = load_learner('model/predictcovidfastaifinal18102023.pkl') categories = learn.dls.vocab def predict_image(get_image): pred, idx, probs = learn.predict(get_image) return dict(zip(categories, map(float, probs))) title = "Detect COVID_19 Infection Xray Chest Images" description = "A covid19 infection classifier trained on the anasmohammedtahir/covidqu dataset with efficientnetb0 base model. Created demo using Gradio and HuggingFace Spaces." examples = ['covid/'] article="

COVID-QU-Ex Dataset

" interpretation='default' enable_queue=True gr.Interface(fn=predict_image, inputs=gr.Image(shape=(224,224)), outputs = gr.Label(num_top_classes=3),title=title,description=description,examples=examples,article=article, interpretation=interpretation,enable_queue=enable_queue).launch(share=False)