import gradio as gr from fastai.vision.all import * from efficientnet_pytorch import EfficientNet #learn = load_learner('model/predictcovidfastaifinal18102023.pkl') learn = load_learner('model/final_20102023_eb7_model.pkl') categories = learn.dls.vocab def predict_image(get_image): pred, idx, probs = learn.predict(get_image) return dict(zip(categories, map(float, probs))) title = "COVID_19 Infection Detectation App!" head = ( "
" "" "The robot was trained to classify chest xray image. To test it, Use the Example Images Provided or Upload your own xray images the space provided." "
" ) description = """ This Space demonstrates model based on efficientnet base model. The model is trained using [anasmohammedtahir/covidqu](https://www.kaggle.com/datasets/anasmohammedtahir/covidqu) dataset """ examples = [ ['Xray Image','covid/covid_1038.png', 'Covid'] #["Covid Xray Image 2","covid/covid_1034.png"], #["Covid Xray Image 3","covid/cd.png"], #["Covid Xray Image 4","covid/covid_1021.png"], #["Covid Xray Image 5","covid/covid_1027.png"], #["Covid Xray Image 6","covid/covid_1042.png"], #["Covid Xray Image 7","covid/covid_1031.png"] ] article="

COVID-QU-Ex Dataset

" interpretation="default" num_shap=5 enable_queue=True gr.Interface(fn=predict_image, inputs=gr.Image(shape=(224,224)), outputs = gr.Label(num_top_classes=3),title=title,description=description,examples=examples, article=article, interpretation=interpretation,enable_queue=enable_queue).launch(share=False)