Anonymous-123's picture
Add application file
ec0fdfd
import torch
import torch.nn as nn
from torch.nn import init
import functools
from torch.optim import lr_scheduler
import torch.nn.functional as F
import math
from einops import rearrange
from .transformer_ops.transformer_function import TransformerEncoderLayer
######################################################################################
# Attention-Aware Layer
######################################################################################
class AttnAware(nn.Module):
def __init__(self, input_nc, activation='gelu', norm='pixel', num_heads=2):
super(AttnAware, self).__init__()
activation_layer = get_nonlinearity_layer(activation)
norm_layer = get_norm_layer(norm)
head_dim = input_nc // num_heads
self.num_heads = num_heads
self.input_nc = input_nc
self.scale = head_dim ** -0.5
self.query_conv = nn.Sequential(
norm_layer(input_nc),
activation_layer,
nn.Conv2d(input_nc, input_nc, kernel_size=1)
)
self.key_conv = nn.Sequential(
norm_layer(input_nc),
activation_layer,
nn.Conv2d(input_nc, input_nc, kernel_size=1)
)
self.weight = nn.Conv2d(self.num_heads*2, 2, kernel_size=1, stride=1)
self.to_out = ResnetBlock(input_nc * 2, input_nc, 1, 0, activation, norm)
def forward(self, x, pre=None, mask=None):
B, C, W, H = x.size()
q = self.query_conv(x).view(B, -1, W*H)
k = self.key_conv(x).view(B, -1, W*H)
v = x.view(B, -1, W*H)
q = rearrange(q, 'b (h d) n -> b h n d', h=self.num_heads)
k = rearrange(k, 'b (h d) n -> b h n d', h=self.num_heads)
v = rearrange(v, 'b (h d) n -> b h n d', h=self.num_heads)
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
if pre is not None:
# attention-aware weight
B, head, N, N = dots.size()
mask_n = mask.view(B, -1, 1, W * H).expand_as(dots)
w_visible = (dots.detach() * mask_n).max(dim=-1, keepdim=True)[0]
w_invisible = (dots.detach() * (1-mask_n)).max(dim=-1, keepdim=True)[0]
weight = torch.cat([w_visible.view(B, head, W, H), w_invisible.view(B, head, W, H)], dim=1)
weight = self.weight(weight)
weight = F.softmax(weight, dim=1)
# visible attention score
pre_v = pre.view(B, -1, W*H)
pre_v = rearrange(pre_v, 'b (h d) n -> b h n d', h=self.num_heads)
dots_visible = torch.where(dots > 0, dots * mask_n, dots / (mask_n + 1e-8))
attn_visible = dots_visible.softmax(dim=-1)
context_flow = torch.einsum('bhij, bhjd->bhid', attn_visible, pre_v)
context_flow = rearrange(context_flow, 'b h n d -> b (h d) n').view(B, -1, W, H)
# invisible attention score
dots_invisible = torch.where(dots > 0, dots * (1 - mask_n), dots / ((1 - mask_n) + 1e-8))
attn_invisible = dots_invisible.softmax(dim=-1)
self_attention = torch.einsum('bhij, bhjd->bhid', attn_invisible, v)
self_attention = rearrange(self_attention, 'b h n d -> b (h d) n').view(B, -1, W, H)
# out
out = weight[:, :1, :, :]*context_flow + weight[:, 1:, :, :]*self_attention
else:
attn = dots.softmax(dim=-1)
out = torch.einsum('bhij, bhjd->bhid', attn, v)
out = rearrange(out, 'b h n d -> b (h d) n').view(B, -1, W, H)
out = self.to_out(torch.cat([out, x], dim=1))
return out
######################################################################################
# base modules
######################################################################################
class NoiseInjection(nn.Module):
def __init__(self):
super(NoiseInjection, self).__init__()
self.alpha = nn.Parameter(torch.zeros(1))
def forward(self, x, noise=None, mask=None):
if noise is None:
b, _, h, w = x.size()
noise = x.new_empty(b, 1, h, w).normal_()
if mask is not None:
mask = F.interpolate(mask, size=x.size()[2:], mode='bilinear', align_corners=True)
return x + self.alpha * noise * (1 - mask) # add noise only to the invisible part
return x + self.alpha * noise
class ConstantInput(nn.Module):
"""
add position embedding for each learned VQ word
"""
def __init__(self, channel, size=16):
super().__init__()
self.input = nn.Parameter(torch.randn(1, channel, size, size))
def forward(self, input):
batch = input.shape[0]
out = self.input.repeat(batch, 1, 1, 1)
return out
class UpSample(nn.Module):
""" sample with convolutional operation
:param input_nc: input channel
:param with_conv: use convolution to refine the feature
:param kernel_size: feature size
:param return_mask: return mask for the confidential score
"""
def __init__(self, input_nc, with_conv=False, kernel_size=3, return_mask=False):
super(UpSample, self).__init__()
self.with_conv = with_conv
self.return_mask = return_mask
if self.with_conv:
self.conv = PartialConv2d(input_nc, input_nc, kernel_size=kernel_size, stride=1,
padding=int(int(kernel_size-1)/2), return_mask=True)
def forward(self, x, mask=None):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
mask = F.interpolate(mask, scale_factor=2, mode='bilinear', align_corners=True) if mask is not None else mask
if self.with_conv:
x, mask = self.conv(x, mask)
if self.return_mask:
return x, mask
else:
return x
class DownSample(nn.Module):
""" sample with convolutional operation
:param input_nc: input channel
:param with_conv: use convolution to refine the feature
:param kernel_size: feature size
:param return_mask: return mask for the confidential score
"""
def __init__(self, input_nc, with_conv=False, kernel_size=3, return_mask=False):
super(DownSample, self).__init__()
self.with_conv = with_conv
self.return_mask = return_mask
if self.with_conv:
self.conv = PartialConv2d(input_nc, input_nc, kernel_size=kernel_size, stride=2,
padding=int(int(kernel_size-1)/2), return_mask=True)
def forward(self, x, mask=None):
if self.with_conv:
x, mask = self.conv(x, mask)
else:
x = F.avg_pool2d(x, kernel_size=2, stride=2)
mask = F.avg_pool2d(mask, kernel_size=2, stride=2) if mask is not None else mask
if self.return_mask:
return x, mask
else:
return x
class ResnetBlock(nn.Module):
def __init__(self, input_nc, output_nc=None, kernel=3, dropout=0.0, activation='gelu', norm='pixel', return_mask=False):
super(ResnetBlock, self).__init__()
activation_layer = get_nonlinearity_layer(activation)
norm_layer = get_norm_layer(norm)
self.return_mask = return_mask
output_nc = input_nc if output_nc is None else output_nc
self.norm1 = norm_layer(input_nc)
self.conv1 = PartialConv2d(input_nc, output_nc, kernel_size=kernel, padding=int((kernel-1)/2), return_mask=True)
self.norm2 = norm_layer(output_nc)
self.conv2 = PartialConv2d(output_nc, output_nc, kernel_size=kernel, padding=int((kernel-1)/2), return_mask=True)
self.dropout = nn.Dropout(dropout)
self.act = activation_layer
if input_nc != output_nc:
self.short = PartialConv2d(input_nc, output_nc, kernel_size=1, stride=1, padding=0)
else:
self.short = Identity()
def forward(self, x, mask=None):
x_short = self.short(x)
x, mask = self.conv1(self.act(self.norm1(x)), mask)
x, mask = self.conv2(self.dropout(self.act(self.norm2(x))), mask)
if self.return_mask:
return (x + x_short) / math.sqrt(2), mask
else:
return (x + x_short) / math.sqrt(2)
class DiffEncoder(nn.Module):
def __init__(self, input_nc, ngf=64, kernel_size=2, embed_dim=512, down_scale=4, num_res_blocks=2, dropout=0.0,
rample_with_conv=True, activation='gelu', norm='pixel', use_attn=False):
super(DiffEncoder, self).__init__()
activation_layer = get_nonlinearity_layer(activation)
norm_layer = get_norm_layer(norm)
# start
self.encode = PartialConv2d(input_nc, ngf, kernel_size=kernel_size, stride=1, padding=int((kernel_size-1)/2), return_mask=True)
# down
self.use_attn = use_attn
self.down_scale = down_scale
self.num_res_blocks = num_res_blocks
self.down = nn.ModuleList()
out_dim = ngf
for i in range(down_scale):
block = nn.ModuleList()
down = nn.Module()
in_dim = out_dim
out_dim = int(in_dim * 2)
down.downsample = DownSample(in_dim, rample_with_conv, kernel_size=2, return_mask=True)
for i_block in range(num_res_blocks):
block.append(ResnetBlock(in_dim, out_dim, kernel_size, dropout, activation, norm, return_mask=True))
in_dim = out_dim
down.block = block
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block1 = ResnetBlock(out_dim, out_dim, kernel_size, dropout, activation, norm, return_mask=True)
if self.use_attn:
self.mid.attn = TransformerEncoderLayer(out_dim, kernel=1)
self.mid.block2 = ResnetBlock(out_dim, out_dim, kernel_size, dropout, activation, norm, return_mask=True)
# end
self.conv_out = ResnetBlock(out_dim, embed_dim, kernel_size, dropout, activation, norm, return_mask=True)
def forward(self, x, mask=None, return_mask=False):
x, mask = self.encode(x, mask)
# down sampling
for i in range(self.down_scale):
x, mask = self.down[i].downsample(x, mask)
for i_block in range(self.num_res_blocks):
x, mask = self.down[i].block[i_block](x, mask)
# middle
x, mask = self.mid.block1(x, mask)
if self.use_attn:
x = self.mid.attn(x)
x, mask = self.mid.block2(x, mask)
# end
x, mask = self.conv_out(x, mask)
if return_mask:
return x, mask
return x
class DiffDecoder(nn.Module):
def __init__(self, output_nc, ngf=64, kernel_size=3, embed_dim=512, up_scale=4, num_res_blocks=2, dropout=0.0, word_size=16,
rample_with_conv=True, activation='gelu', norm='pixel', add_noise=False, use_attn=True, use_pos=True):
super(DiffDecoder, self).__init__()
activation_layer = get_nonlinearity_layer(activation)
norm_layer = get_norm_layer(norm)
self.up_scale = up_scale
self.num_res_blocks = num_res_blocks
self.add_noise = add_noise
self.use_attn = use_attn
self.use_pos = use_pos
in_dim = ngf * (2 ** self.up_scale)
# start
if use_pos:
self.pos_embed = ConstantInput(embed_dim, size=word_size)
self.conv_in = PartialConv2d(embed_dim, in_dim, kernel_size=kernel_size, stride=1, padding=int((kernel_size-1)/2))
# middle
self.mid = nn.Module()
self.mid.block1 = ResnetBlock(in_dim, in_dim, kernel_size, dropout, activation, norm)
if self.use_attn:
self.mid.attn = TransformerEncoderLayer(in_dim, kernel=1)
self.mid.block2 = ResnetBlock(in_dim, in_dim, kernel_size, dropout, activation, norm)
# up
self.up = nn.ModuleList()
out_dim = in_dim
for i in range(up_scale):
block = nn.ModuleList()
attn = nn.ModuleList()
noise = nn.ModuleList()
up = nn.Module()
in_dim = out_dim
out_dim = int(in_dim / 2)
for i_block in range(num_res_blocks):
if add_noise:
noise.append(NoiseInjection())
block.append(ResnetBlock(in_dim, out_dim, kernel_size, dropout, activation, norm))
in_dim = out_dim
if i == 0 and self.use_attn:
attn.append(TransformerEncoderLayer(in_dim, kernel=1))
up.block = block
up.attn = attn
up.noise = noise
upsample = True if (i != 0) else False
up.out = ToRGB(in_dim, output_nc, upsample, activation, norm)
up.upsample = UpSample(in_dim, rample_with_conv, kernel_size=3)
self.up.append(up)
# end
self.decode = ToRGB(in_dim, output_nc, True, activation, norm)
def forward(self, x, mask=None):
x = x + self.pos_embed(x) if self.use_pos else x
x = self.conv_in(x)
# middle
x = self.mid.block1(x)
if self.use_attn:
x = self.mid.attn(x)
x = self.mid.block2(x)
# up
skip = None
for i in range(self.up_scale):
for i_block in range(self.num_res_blocks):
if self.add_noise:
x = self.up[i].noise[i_block](x, mask=mask)
x = self.up[i].block[i_block](x)
if len(self.up[i].attn) > 0:
x = self.up[i].attn[i_block](x)
skip = self.up[i].out(x, skip)
x = self.up[i].upsample(x)
# end
x = self.decode(x, skip)
return x
class LinearEncoder(nn.Module):
def __init__(self, input_nc, kernel_size=16, embed_dim=512):
super(LinearEncoder, self).__init__()
self.encode = PartialConv2d(input_nc, embed_dim, kernel_size=kernel_size, stride=kernel_size, return_mask=True)
def forward(self, x, mask=None, return_mask=False):
x, mask = self.encode(x, mask)
if return_mask:
return x, mask
return x
class LinearDecoder(nn.Module):
def __init__(self, output_nc, ngf=64, kernel_size=16, embed_dim=512, activation='gelu', norm='pixel'):
super(LinearDecoder, self).__init__()
activation_layer = get_nonlinearity_layer(activation)
norm_layer = get_norm_layer(norm)
self.decode = nn.Sequential(
norm_layer(embed_dim),
activation_layer,
PartialConv2d(embed_dim, ngf*kernel_size*kernel_size, kernel_size=3, padding=1),
nn.PixelShuffle(kernel_size),
norm_layer(ngf),
activation_layer,
PartialConv2d(ngf, output_nc, kernel_size=3, padding=1)
)
def forward(self, x, mask=None):
x = self.decode(x)
return torch.tanh(x)
class ToRGB(nn.Module):
def __init__(self, input_nc, output_nc, upsample=True, activation='gelu', norm='pixel'):
super().__init__()
activation_layer = get_nonlinearity_layer(activation)
norm_layer = get_norm_layer(norm)
if upsample:
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
input_nc = input_nc + output_nc
self.conv = nn.Sequential(
norm_layer(input_nc),
activation_layer,
PartialConv2d(input_nc, output_nc, kernel_size=3, padding=1)
)
def forward(self, input, skip=None):
if skip is not None:
skip = self.upsample(skip)
input = torch.cat([input, skip], dim=1)
out = self.conv(input)
return torch.tanh(out)
######################################################################################
# base function for network structure
######################################################################################
def get_scheduler(optimizer, opt):
"""Return a learning rate scheduler
Parameters:
optimizer -- the optimizer of the network
opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions. 
opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine
"""
if opt.lr_policy == 'linear':
def lambda_rule(iter):
lr_l = 1.0 - max(0, iter + opt.iter_count - opt.n_iter) / float(opt.n_iter_decay + 1)
return lr_l
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
elif opt.lr_policy == 'plateau':
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
elif opt.lr_policy == 'cosine':
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0)
else:
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
return scheduler
def init_weights(net, init_type='normal', init_gain=0.02, debug=False):
"""Initialize network weights.
Parameters:
net (network) -- network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
work better for some applications. Feel free to try yourself.
"""
def init_func(m): # define the initialization function
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if debug:
print(classname)
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
init.normal_(m.weight.data, 1.0, init_gain)
init.constant_(m.bias.data, 0.0)
net.apply(init_func) # apply the initialization function <init_func>
def init_net(net, init_type='normal', init_gain=0.02, debug=False, initialize_weights=True):
"""Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights
Parameters:
net (network) -- the network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
gain (float) -- scaling factor for normal, xavier and orthogonal.
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
Return an initialized network.
"""
if initialize_weights:
init_weights(net, init_type, init_gain=init_gain, debug=debug)
return net
class Identity(nn.Module):
def forward(self, x):
return x
def get_norm_layer(norm_type='instance'):
"""Return a normalization layer
Parameters:
norm_type (str) -- the name of the normalization layer: batch | instance | none
For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
"""
if norm_type == 'batch':
norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
elif norm_type == 'instance':
norm_layer = functools.partial(nn.InstanceNorm2d, affine=True)
elif norm_type == 'pixel':
norm_layer = functools.partial(PixelwiseNorm)
elif norm_type == 'layer':
norm_layer = functools.partial(nn.LayerNorm)
elif norm_type == 'none':
def norm_layer(x): return Identity()
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
return norm_layer
def get_nonlinearity_layer(activation_type='PReLU'):
"""Get the activation layer for the networks"""
if activation_type == 'relu':
nonlinearity_layer = nn.ReLU()
elif activation_type == 'gelu':
nonlinearity_layer = nn.GELU()
elif activation_type == 'leakyrelu':
nonlinearity_layer = nn.LeakyReLU(0.2)
elif activation_type == 'prelu':
nonlinearity_layer = nn.PReLU()
else:
raise NotImplementedError('activation layer [%s] is not found' % activation_type)
return nonlinearity_layer
class PixelwiseNorm(nn.Module):
def __init__(self, input_nc):
super(PixelwiseNorm, self).__init__()
self.init = False
self.alpha = nn.Parameter(torch.ones(1, input_nc, 1, 1))
def forward(self, x, alpha=1e-8):
"""
forward pass of the module
:param x: input activations volume
:param alpha: small number for numerical stability
:return: y => pixel normalized activations
"""
# x = x - x.mean(dim=1, keepdim=True)
y = x.pow(2.).mean(dim=1, keepdim=True).add(alpha).rsqrt() # [N1HW]
y = x * y # normalize the input x volume
return self.alpha*y
###############################################################################
# BSD 3-Clause License
#
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Author & Contact: Guilin Liu ([email protected])
###############################################################################
class PartialConv2d(nn.Conv2d):
def __init__(self, *args, **kwargs):
# whether the mask is multi-channel or not
if 'multi_channel' in kwargs:
self.multi_channel = kwargs['multi_channel']
kwargs.pop('multi_channel')
else:
self.multi_channel = False
if 'return_mask' in kwargs:
self.return_mask = kwargs['return_mask']
kwargs.pop('return_mask')
else:
self.return_mask = False
super(PartialConv2d, self).__init__(*args, **kwargs)
if self.multi_channel:
self.weight_maskUpdater = torch.ones(self.out_channels, self.in_channels, self.kernel_size[0],
self.kernel_size[1])
else:
self.weight_maskUpdater = torch.ones(1, 1, self.kernel_size[0], self.kernel_size[1])
self.slide_winsize = self.weight_maskUpdater.shape[1] * self.weight_maskUpdater.shape[2] * \
self.weight_maskUpdater.shape[3]
self.last_size = (None, None, None, None)
self.update_mask = None
self.mask_ratio = None
def forward(self, input, mask_in=None):
assert len(input.shape) == 4
if mask_in is not None or self.last_size != tuple(input.shape):
self.last_size = tuple(input.shape)
with torch.no_grad():
if self.weight_maskUpdater.type() != input.type():
self.weight_maskUpdater = self.weight_maskUpdater.to(input)
if mask_in is None:
# if mask is not provided, create a mask
if self.multi_channel:
mask = torch.ones(input.data.shape[0], input.data.shape[1], input.data.shape[2],
input.data.shape[3]).to(input)
else:
mask = torch.ones(1, 1, input.data.shape[2], input.data.shape[3]).to(input)
else:
mask = mask_in
self.update_mask = F.conv2d(mask, self.weight_maskUpdater, bias=None, stride=self.stride,
padding=self.padding, dilation=self.dilation, groups=1)
# for mixed precision training, change 1e-8 to 1e-6
self.mask_ratio = self.slide_winsize / (self.update_mask + 1e-8)
self.update_mask1 = torch.clamp(self.update_mask, 0, 1)
self.mask_ratio = torch.mul(self.mask_ratio, self.update_mask1)
raw_out = super(PartialConv2d, self).forward(torch.mul(input, mask) if mask_in is not None else input)
if self.bias is not None:
bias_view = self.bias.view(1, self.out_channels, 1, 1)
output = torch.mul(raw_out - bias_view, self.mask_ratio) + bias_view
output = torch.mul(output, self.update_mask1)
else:
output = torch.mul(raw_out, self.mask_ratio)
if self.return_mask:
return output, self.update_mask / self.slide_winsize # replace the valid value to confident score
else:
return output