import streamlit as st from transformers import pipeline # Initialize a text generation pipeline generator = pipeline('text-generation', model='dbmdz/german-gpt2') st.title('German Medical Content Manager') # Sidebar for user input st.sidebar.header('User Input Options') input_topic = st.sidebar.text_input('Enter a medical topic', 'Type 1 Diabetes') # Main Page st.write(f"Creating social media content for: {input_topic}") # Function to generate text based on the input topic def generate_content(topic): generated_text = generator(f"Letzte Nachrichten über {topic}:", max_length=50, num_return_sequences=1) return generated_text[0]['generated_text'] if st.button('Generate Social Media Post'): with st.spinner('Generating...'): post_content = generate_content(input_topic) st.success('Generated Content:') st.write(post_content) st.write('Generated social media posts will appear here after clicking the "Generate" button.')