import streamlit as st from transformers import pipeline # Initialize a text generation pipeline generator = pipeline('text-generation', model='dbmdz/german-gpt2') # Define the pages def page_social_media_generator(): # Using st.columns to create a two-column layout col1, col2 = st.columns([3, 1]) with col1: st.title("German Medical Content Manager") with col2: st.image('Content_Creation_Pic.png', use_column_width=True) input_topic = st.text_input('Enter a medical topic', 'Type 1 Diabetes') st.write(f"Creating social media content for: {input_topic}") def generate_content(topic): generated_text = generator(f"Letzte Nachrichten über {topic}:", max_length=50, num_return_sequences=1) return generated_text[0]['generated_text'] if st.button('Generate Social Media Post'): with st.spinner('Generating...'): post_content = generate_content(input_topic) st.success('Generated Content:') st.write(post_content) st.write('Generated social media posts will appear here after clicking the "Generate" button.') def page_test(): st.title('Test Page') st.write('This is a test page with a test name.') # Setup the sidebar with page selection st.sidebar.title("Anne's Current Projects :star2:") page = st.selectbox( 'What project do you like to see first?', ('Social Media Content Generator', 'Test Page')) # Display the selected page if page == 'Social Media Content Generator': page_social_media_generator() elif page == 'Test Page': page_test()