Spaces:
Running
Running
File size: 1,600 Bytes
dee81af e6c03c9 1ef0484 7514d3f 4ba8de1 7514d3f 1ea7fc9 1ef0484 e6c03c9 dee81af e6c03c9 dee81af e6c03c9 dee81af e6c03c9 dee81af e6c03c9 dee81af e6c03c9 1d04a42 e6c03c9 1d04a42 c9f3fd9 e6c03c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import streamlit as st
from transformers import pipeline
# Initialize a text generation pipeline
generator = pipeline('text-generation', model='dbmdz/german-gpt2')
# Define the pages
def page_social_media_generator():
# Using st.columns to create a two-column layout
col1, col2 = st.columns([3, 1])
with col1:
st.title("German Medical Content Manager")
with col2:
st.image('Content_Creation_Pic.png', use_column_width=True)
input_topic = st.text_input('Enter a medical topic', 'Type 1 Diabetes')
st.write(f"Creating social media content for: {input_topic}")
def generate_content(topic):
generated_text = generator(f"Letzte Nachrichten über {topic}:", max_length=50, num_return_sequences=1)
return generated_text[0]['generated_text']
if st.button('Generate Social Media Post'):
with st.spinner('Generating...'):
post_content = generate_content(input_topic)
st.success('Generated Content:')
st.write(post_content)
st.write('Generated social media posts will appear here after clicking the "Generate" button.')
def page_test():
st.title('Test Page')
st.write('This is a test page with a test name.')
# Setup the sidebar with page selection
st.sidebar.title("Anne's Current Projects :star2:")
page = st.selectbox(
'What project do you like to see first?',
('Social Media Content Generator', 'Test Page'))
# Display the selected page
if page == 'Social Media Content Generator':
page_social_media_generator()
elif page == 'Test Page':
page_test()
|