import streamlit as st import transformers from transformers import AutoTokenizer from transformers import AutoModelForSequenceClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") st.title("Text Classification with BERT") text = st.text_input("Enter some text") if text: encoded_text = tokenizer.encode_plus(text, max_length=128, padding="max_length", truncation=True, return_tensors="pt") logits = model(encoded_text["input_ids"], attention_mask=encoded_text["attention_mask"]).logits pred = logits.argmax().item() st.write("Prediction:", pred) #st.text_input('First name') #classifier = pipeline("text-classification", model=model) #classifier('st.text_input') #st.text('Fixed width text') #x = st.slider('Select a value') #st.write(x, 'squared is', x * x)