Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,80 +1,80 @@
|
|
1 |
-
#importing libraries
|
2 |
-
import streamlit as st
|
3 |
-
import yfinance as yf
|
4 |
-
from datetime import date
|
5 |
-
from prophet import Prophet
|
6 |
-
from prophet.plot import plot_plotly
|
7 |
-
from plotly import graph_objs as go
|
8 |
-
|
9 |
-
|
10 |
-
#main function
|
11 |
-
def main():
|
12 |
-
START="2017-01-01"
|
13 |
-
TODAY=date.today().strftime("%Y-%m-%d")
|
14 |
-
|
15 |
-
st.title("Stock Forecast App")
|
16 |
-
st.write("**Disclaimer:** The stock price predictions generated by this app should not be considered financial advice. Always consult with a qualified financial advisor before making investment decisions.")
|
17 |
-
|
18 |
-
stocks= ("MSFT","AAPL","GOOG")
|
19 |
-
|
20 |
-
st.write("""
|
21 |
-
***Stock Tickers:***
|
22 |
-
- AAPL : Apple Inc.
|
23 |
-
- MSFT : Microsoft Corporation.
|
24 |
-
- GOOG : Alphabet Inc.(Google)
|
25 |
-
""")
|
26 |
-
|
27 |
-
selected_stocks=st.selectbox('select dataset for prediction',stocks)
|
28 |
-
n_year=st.slider("**Select Year of prediction**",1,4)
|
29 |
-
period=n_year * 365
|
30 |
-
|
31 |
-
#download Dataset
|
32 |
-
@st.cache_data
|
33 |
-
def load_data(ticker):
|
34 |
-
data=yf.download(ticker,START,TODAY)
|
35 |
-
data.reset_index(inplace=True)
|
36 |
-
return data
|
37 |
-
|
38 |
-
data_load_state=st.text('Loading data..')
|
39 |
-
data=load_data(selected_stocks)
|
40 |
-
data_load_state.text("Done!!")
|
41 |
-
|
42 |
-
st.subheader("Raw data")
|
43 |
-
st.write(data.tail())
|
44 |
-
|
45 |
-
#plot the Raw Data
|
46 |
-
def plot_rawdata():
|
47 |
-
fig=go.Figure()
|
48 |
-
fig.add_trace(go.Scatter(x=data['Date'], y=data['Open'],name="stock_open"))
|
49 |
-
fig.add_trace(go.Scatter(x=data['Date'], y=data['Close'],name="stock_close"))
|
50 |
-
fig.layout.update(title_text="Forecast Data")
|
51 |
-
fig.update_xaxes(rangeslider_visible=True)
|
52 |
-
st.plotly_chart(fig)
|
53 |
-
|
54 |
-
plot_rawdata()
|
55 |
-
|
56 |
-
#Forecasting
|
57 |
-
|
58 |
-
df_train=data[["Date",'Close']]
|
59 |
-
df_train=df_train.rename(columns={'Date':'ds','Close':'y'})
|
60 |
-
|
61 |
-
model=Prophet()
|
62 |
-
model.fit(df_train)
|
63 |
-
|
64 |
-
future=model.make_future_dataframe(periods=period)
|
65 |
-
forecast=model.predict(future)
|
66 |
-
|
67 |
-
#show and plot the feature
|
68 |
-
st.subheader("Forecasted dataset")
|
69 |
-
st.write(forecast.tail(5))
|
70 |
-
|
71 |
-
st.write("Forecast plot")
|
72 |
-
fig1=plot_plotly(model,forecast)
|
73 |
-
st.plotly_chart(fig1)
|
74 |
-
|
75 |
-
st.write("Forecast components")
|
76 |
-
fig2=model.plot_components(forecast)
|
77 |
-
st.write(fig2)
|
78 |
-
|
79 |
-
if __name__=="__main__":
|
80 |
main()
|
|
|
1 |
+
#importing libraries
|
2 |
+
import streamlit as st
|
3 |
+
import yfinance as yf
|
4 |
+
from datetime import date
|
5 |
+
from prophet import Prophet
|
6 |
+
from prophet.plot import plot_plotly
|
7 |
+
from plotly import graph_objs as go
|
8 |
+
|
9 |
+
|
10 |
+
#main function
|
11 |
+
def main():
|
12 |
+
START="2017-01-01"
|
13 |
+
TODAY=date.today().strftime("%Y-%m-%d")
|
14 |
+
|
15 |
+
st.title("Stock Forecast App")
|
16 |
+
st.write("**Disclaimer:** The stock price predictions generated by this app should not be considered financial advice. Always consult with a qualified financial advisor before making investment decisions.")
|
17 |
+
|
18 |
+
stocks= ("MSFT","AAPL","GOOG")
|
19 |
+
|
20 |
+
st.write("""
|
21 |
+
***Stock Tickers:***
|
22 |
+
- AAPL : Apple Inc.
|
23 |
+
- MSFT : Microsoft Corporation.
|
24 |
+
- GOOG : Alphabet Inc.(Google)
|
25 |
+
""")
|
26 |
+
|
27 |
+
selected_stocks=st.selectbox('select dataset for prediction',stocks)
|
28 |
+
n_year=st.slider("**Select Year of prediction**",1,4)
|
29 |
+
period=n_year * 365
|
30 |
+
|
31 |
+
#download Dataset
|
32 |
+
@st.cache_data
|
33 |
+
def load_data(ticker):
|
34 |
+
data=yf.download(ticker,START,TODAY)
|
35 |
+
data.reset_index(inplace=True)
|
36 |
+
return data
|
37 |
+
|
38 |
+
data_load_state=st.text('Loading data..')
|
39 |
+
data=load_data(selected_stocks)
|
40 |
+
data_load_state.text("Done!!")
|
41 |
+
|
42 |
+
st.subheader("Raw data")
|
43 |
+
st.write(data.tail())
|
44 |
+
|
45 |
+
#plot the Raw Data
|
46 |
+
def plot_rawdata():
|
47 |
+
fig=go.Figure()
|
48 |
+
fig.add_trace(go.Scatter(x=data['Date'], y=data['Open'],name="stock_open"))
|
49 |
+
fig.add_trace(go.Scatter(x=data['Date'], y=data['Close'],name="stock_close"))
|
50 |
+
fig.layout.update(title_text="Forecast Data")
|
51 |
+
fig.update_xaxes(rangeslider_visible=True)
|
52 |
+
st.plotly_chart(fig)
|
53 |
+
|
54 |
+
plot_rawdata()
|
55 |
+
|
56 |
+
#Forecasting
|
57 |
+
|
58 |
+
df_train=data[["Date",'Close']]
|
59 |
+
df_train=df_train.rename(columns={'Date':'ds','Close':'y'})
|
60 |
+
|
61 |
+
model=Prophet()
|
62 |
+
model.fit(df_train)
|
63 |
+
|
64 |
+
future=model.make_future_dataframe(periods=period)
|
65 |
+
forecast=model.predict(future)
|
66 |
+
|
67 |
+
#show and plot the feature
|
68 |
+
st.subheader("Forecasted dataset")
|
69 |
+
st.write(forecast.tail(5))
|
70 |
+
|
71 |
+
st.write("Forecast plot")
|
72 |
+
fig1=plot_plotly(model,forecast)
|
73 |
+
st.plotly_chart(fig1)
|
74 |
+
|
75 |
+
st.write("Forecast components")
|
76 |
+
fig2=model.plot_components(forecast)
|
77 |
+
st.write(fig2)
|
78 |
+
|
79 |
+
if __name__=="__main__":
|
80 |
main()
|