File size: 6,027 Bytes
bc059ff
 
 
 
 
 
 
 
 
 
 
e8a9c3a
bc059ff
e8a9c3a
bc059ff
 
 
 
 
 
 
 
 
 
 
 
e8a9c3a
 
bc059ff
e8a9c3a
 
 
 
bc059ff
e8a9c3a
 
bc059ff
 
 
 
 
e8a9c3a
 
 
bc059ff
 
 
 
 
 
 
 
 
 
 
 
 
 
0f711d8
bc059ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8a9c3a
bc059ff
 
 
 
 
 
 
e8a9c3a
bc059ff
 
 
 
 
 
 
 
 
e8a9c3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc059ff
 
 
 
 
 
 
 
 
e8a9c3a
 
 
 
 
 
 
 
 
8ae8fc8
e8a9c3a
 
 
 
 
 
bc059ff
 
e8a9c3a
bc059ff
e8a9c3a
bc059ff
8ae8fc8
e8a9c3a
 
bc059ff
 
 
 
 
 
 
8ae8fc8
bc059ff
8ae8fc8
e8a9c3a
bc059ff
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os

import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
import torchvision.transforms as T
from PIL import Image
from decord import VideoReader
from decord import cpu
from uniformer_light_video import uniformer_xxs_video
from uniformer_light_image import uniformer_xxs_image
from kinetics_class_index import kinetics_classnames
from imagenet_class_index import imagenet_classnames
from transforms import (
    GroupNormalize, GroupScale, GroupCenterCrop, 
    Stack, ToTorchFormatTensor
)

import gradio as gr
from huggingface_hub import hf_hub_download


# Device on which to run the model
# Set to cuda to load on GPU
device = "cpu"
model_video_path = hf_hub_download(repo_id="Andy1621/uniformer_light", filename="uniformer_xxs16_160_k400.pth")
model_image_path = hf_hub_download(repo_id="Andy1621/uniformer_light", filename="uniformer_xxs_160_in1k.pth")
# Pick a pretrained model 
model_video = uniformer_xxs_video()
model_video.load_state_dict(torch.load(model_video_path, map_location='cpu'))
model_image = uniformer_xxs_image()
model_image.load_state_dict(torch.load(model_image_path, map_location='cpu'))
# Set to eval mode and move to desired device
model_video = model_video.to(device).eval()
model_image = model_image.to(device).eval()

# Create an id to label name mapping
kinetics_id_to_classname = {}
for k, v in kinetics_classnames.items():
    kinetics_id_to_classname[k] = v
imagenet_id_to_classname = {}
for k, v in imagenet_classnames.items():
    imagenet_id_to_classname[k] = v[1] 


def get_index(num_frames, num_segments=8):
    seg_size = float(num_frames - 1) / num_segments
    start = int(seg_size / 2)
    offsets = np.array([
        start + int(np.round(seg_size * idx)) for idx in range(num_segments)
    ])
    return offsets


def load_video(video_path):
    vr = VideoReader(video_path, ctx=cpu(0))
    num_frames = len(vr)
    frame_indices = get_index(num_frames, 16)

    # transform
    crop_size = 160
    scale_size = 160
    input_mean = [0.485, 0.456, 0.406]
    input_std = [0.229, 0.224, 0.225]

    transform = T.Compose([
        GroupScale(int(scale_size)),
        GroupCenterCrop(crop_size),
        Stack(),
        ToTorchFormatTensor(),
        GroupNormalize(input_mean, input_std) 
    ])

    images_group = list()
    for frame_index in frame_indices:
        img = Image.fromarray(vr[frame_index].asnumpy())
        images_group.append(img)
    torch_imgs = transform(images_group)
    return torch_imgs
    

def inference_video(video):
    vid = load_video(video)
    
    # The model expects inputs of shape: B x C x H x W
    TC, H, W = vid.shape
    inputs = vid.reshape(1, TC//3, 3, H, W).permute(0, 2, 1, 3, 4)
    
    with torch.no_grad():
        prediction = model_video(inputs)
        prediction = F.softmax(prediction, dim=1).flatten()

    return {kinetics_id_to_classname[str(i)]: float(prediction[i]) for i in range(400)}
    

def set_example_video(example: list) -> dict:
    return gr.Video.update(value=example[0])


def inference_image(img):
    image = img
    image_transform = T.Compose(
    [
        T.Resize(224),
        T.CenterCrop(224),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ]
    )
    image = image_transform(image)
    
    # The model expects inputs of shape: B x C x H x W
    image = image.unsqueeze(0)
    
    with torch.no_grad():
        prediction = model_image(image)
        prediction = F.softmax(prediction, dim=1).flatten()

    return {imagenet_id_to_classname[str(i)]: float(prediction[i]) for i in range(1000)}


def set_example_image(example: list) -> dict:
    return gr.Image.update(value=example[0])


demo = gr.Blocks()
with demo:
    gr.Markdown(
        """
        # UniFormer Light
        Gradio demo for <a href='https://github.com/Sense-X/UniFormer' target='_blank'>UniFormer</a>: To use it, simply upload your video, or click one of the examples to load them. Read more at the links below.
        """
    )

    with gr.Tab("Video"):
        with gr.Box():
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        input_video = gr.Video(label='Input Video').style(height=360)
                    with gr.Row():
                        submit_video_button = gr.Button('Submit')
                with gr.Column():
                        label_video = gr.Label(num_top_classes=5)
            with gr.Row():
                example_videos = gr.Dataset(components=[input_video], samples=[['./videos/hitting_baseball.mp4'], ['./videos/hoverboarding.mp4'], ['./videos/yoga.mp4']])
        
    with gr.Tab("Image"):
        with gr.Box():
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        input_image = gr.Image(label='Input Image', type='pil').style(height=360)
                    with gr.Row():
                        submit_image_button = gr.Button('Submit')
                with gr.Column():
                    label_image = gr.Label(num_top_classes=5)
            with gr.Row():
                example_images = gr.Dataset(components=[input_image], samples=[['./images/cat.png'], ['./images/dog.png'], ['./images/panda.png']])

    gr.Markdown(
        """
        <p style='text-align: center'><a href='https://arxiv.org/abs/2201.09450' target='_blank'>[TPAMI] UniFormer: Unifying Convolution and Self-attention for Visual Recognition</a> | <a href='https://github.com/Sense-X/UniFormer' target='_blank'>Github Repo</a></p>
        """
    )

    submit_video_button.click(fn=inference_video, inputs=input_video, outputs=label_video)
    example_videos.click(fn=set_example_video, inputs=example_videos, outputs=example_videos.components)
    submit_image_button.click(fn=inference_image, inputs=input_image, outputs=label_image)
    example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images.components)

demo.launch(enable_queue=True)