SakuraD's picture
update
cdfecf8
raw
history blame
5.71 kB
import argparse
import os
import os.path as osp
import numpy as np
import onnx
import onnxruntime as ort
import torch
from mmcv.ops import get_onnxruntime_op_path
from mmcv.tensorrt import (TRTWraper, is_tensorrt_plugin_loaded, onnx2trt,
save_trt_engine)
from mmcv.visualization.image import imshow_det_bboxes
from mmdet.core import get_classes, preprocess_example_input
def get_GiB(x: int):
"""return x GiB."""
return x * (1 << 30)
def onnx2tensorrt(onnx_file,
trt_file,
input_config,
verify=False,
show=False,
dataset='coco',
workspace_size=1):
onnx_model = onnx.load(onnx_file)
input_shape = input_config['input_shape']
# create trt engine and wraper
opt_shape_dict = {'input': [input_shape, input_shape, input_shape]}
max_workspace_size = get_GiB(workspace_size)
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
fp16_mode=False,
max_workspace_size=max_workspace_size)
save_dir, _ = osp.split(trt_file)
if save_dir:
os.makedirs(save_dir, exist_ok=True)
save_trt_engine(trt_engine, trt_file)
print(f'Successfully created TensorRT engine: {trt_file}')
if verify:
one_img, one_meta = preprocess_example_input(input_config)
input_img_cpu = one_img.detach().cpu().numpy()
input_img_cuda = one_img.cuda()
img = one_meta['show_img']
# Get results from TensorRT
trt_model = TRTWraper(trt_file, ['input'], ['boxes', 'labels'])
with torch.no_grad():
trt_outputs = trt_model({'input': input_img_cuda})
trt_boxes = trt_outputs['boxes'].detach().cpu().numpy()
trt_labels = trt_outputs['labels'].detach().cpu().numpy()
# Get results from ONNXRuntime
ort_custom_op_path = get_onnxruntime_op_path()
session_options = ort.SessionOptions()
if osp.exists(ort_custom_op_path):
session_options.register_custom_ops_library(ort_custom_op_path)
sess = ort.InferenceSession(onnx_file, session_options)
onnx_outputs = sess.run(None, {
'input': input_img_cpu,
})
ort_boxes, ort_labels = onnx_outputs
# Show detection outputs
if show:
CLASSES = get_classes(dataset)
score_thr = 0.35
imshow_det_bboxes(
img.copy(),
trt_boxes,
trt_labels,
CLASSES,
score_thr=score_thr,
win_name='TensorRT')
imshow_det_bboxes(
img.copy(),
ort_boxes,
ort_labels,
CLASSES,
score_thr=score_thr,
win_name='ONNXRuntime')
# Compare results
np.testing.assert_allclose(
ort_boxes, trt_boxes, rtol=1e-03, atol=1e-05)
np.testing.assert_allclose(ort_labels, trt_labels)
print('The numerical values are the same ' +
'between ONNXRuntime and TensorRT')
def parse_args():
parser = argparse.ArgumentParser(
description='Convert MMDetection models from ONNX to TensorRT')
parser.add_argument('model', help='Filename of input ONNX model')
parser.add_argument(
'--trt-file',
type=str,
default='tmp.trt',
help='Filename of output TensorRT engine')
parser.add_argument(
'--input-img', type=str, default='', help='Image for test')
parser.add_argument(
'--show', action='store_true', help='Whether to show output results')
parser.add_argument(
'--dataset', type=str, default='coco', help='Dataset name')
parser.add_argument(
'--verify',
action='store_true',
help='Verify the outputs of ONNXRuntime and TensorRT')
parser.add_argument(
'--to-rgb',
action='store_false',
help='Feed model with RGB or BGR image. Default is RGB.')
parser.add_argument(
'--shape',
type=int,
nargs='+',
default=[400, 600],
help='Input size of the model')
parser.add_argument(
'--mean',
type=float,
nargs='+',
default=[123.675, 116.28, 103.53],
help='Mean value used for preprocess input data')
parser.add_argument(
'--std',
type=float,
nargs='+',
default=[58.395, 57.12, 57.375],
help='Variance value used for preprocess input data')
parser.add_argument(
'--workspace-size',
type=int,
default=1,
help='Max workspace size in GiB')
args = parser.parse_args()
return args
if __name__ == '__main__':
assert is_tensorrt_plugin_loaded(), 'TensorRT plugin should be compiled.'
args = parse_args()
if not args.input_img:
args.input_img = osp.join(osp.dirname(__file__), '../demo/demo.jpg')
if len(args.shape) == 1:
input_shape = (1, 3, args.shape[0], args.shape[0])
elif len(args.shape) == 2:
input_shape = (1, 3) + tuple(args.shape)
else:
raise ValueError('invalid input shape')
assert len(args.mean) == 3
assert len(args.std) == 3
normalize_cfg = {'mean': args.mean, 'std': args.std, 'to_rgb': args.to_rgb}
input_config = {
'input_shape': input_shape,
'input_path': args.input_img,
'normalize_cfg': normalize_cfg
}
# Create TensorRT engine
onnx2tensorrt(
args.model,
args.trt_file,
input_config,
verify=args.verify,
show=args.show,
dataset=args.dataset,
workspace_size=args.workspace_size)