from ultralytics import YOLO from PIL import Image import numpy as np import matplotlib.pyplot as plt import gradio as gr import io # import cv2 model = YOLO('checkpoints/FastSAM.pt') # load a custom model def show_mask(annotation, ax, random_color=False, bbox=None, points=None): if random_color : # random mask color color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) if type(annotation) == dict: annotation = annotation['segmentation'] mask = annotation h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) # draw box if bbox is not None: x1, y1, x2, y2 = bbox ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1)) # draw point if points is not None: ax.scatter([point[0] for point in points], [point[1] for point in points], s=10, c='g') ax.imshow(mask_image) return mask_image def post_process(annotations, image, mask_random_color=False, bbox=None, points=None): # image = cv2.imread(image_path) # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.figure(figsize=(10, 10)) plt.imshow(image) for i, mask in enumerate(annotations): show_mask(mask, plt.gca(),random_color=mask_random_color,bbox=bbox,points=points) plt.axis('off') # create a BytesIO object buf = io.BytesIO() # save plot to buf plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0.0) # plt.savefig('buffer/tmp.png', bbox_inches='tight', pad_inches=0.0) # use PIL to open the image img = Image.open(buf) # don't forget to close the buffer buf.close() return img # def show_mask(annotation, ax, random_color=False): # if random_color : # 掩膜颜色是否随机决定 # color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) # else: # color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) # mask = annotation.cpu().numpy() # h, w = mask.shape[-2:] # mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) # ax.imshow(mask_image) # def post_process(annotations, image): # plt.figure(figsize=(10, 10)) # plt.imshow(image) # for i, mask in enumerate(annotations): # show_mask(mask.data, plt.gca(),random_color=True) # plt.axis('off') # 获取渲染后的像素数据并转换为PIL图像 return pil_image # post_process(results[0].masks, Image.open("../data/cake.png")) def predict(inp): results = model(inp, device='0', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024) pil_image = post_process(results[0].masks, inp) return pil_image demo = gr.Interface(fn=predict, inputs=gr.inputs.Image(type='pil'), outputs=gr.outputs.Image(type='pil'), examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"], ["assets/sa_561.jpg"], ["assets/sa_862.jpg"], ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"], ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],], ) demo.launch()