#!/usr/bin/env python
# coding: utf-8
# ### Keywords to Title Generator
# - https://huggingface.co/EnglishVoice/t5-base-keywords-to-headline?text=diabetic+diet+plan
# - Apache 2.0
# In[7]:
import torch
from transformers import T5ForConditionalGeneration,T5Tokenizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = T5ForConditionalGeneration.from_pretrained("EnglishVoice/t5-base-keywords-to-headline")
tokenizer = T5Tokenizer.from_pretrained("EnglishVoice/t5-base-keywords-to-headline", clean_up_tokenization_spaces=True, legacy=False)
model = model.to(device)
# In[37]:
def title_gen(keywords, diversity, temp):
if keywords!= "":
text = "headline: " + keywords
encoding = tokenizer.encode_plus(text, return_tensors = "pt")
input_ids = encoding["input_ids"].to(device)
attention_masks = encoding["attention_mask"].to(device)
if diversity:
num_beams = 20,
num_beam_groups = 20,
diversity_penalty=0.8,
early_stopping = True,
else:
penalty_alpha = 0.8,
beam_outputs = model.generate(
input_ids = input_ids,
attention_mask = attention_masks,
max_new_tokens = 30,
do_sample = True,
num_return_sequences = 5,
temperature = temp,
top_k = 15,
no_repeat_ngram_size = 3,
#top_p = 0.60,
)
titles = ""
for i in range(len(beam_outputs)):
result = tokenizer.decode(beam_outputs[i], skip_special_tokens=True)
titles += f"
{result}
" #Create string with titles and
tag for html reading in gradio html
return titles
# In[8]:
import gradio as gr
# In[40]:
iface = gr.Interface(fn=title_gen,
inputs=[gr.Textbox(label="Paste one or more keywords searated by a comma and hit 'Submit'.", lines=1), "checkbox", gr.Slider(0.1, 1.9, 1.2)],
outputs=[gr.HTML(label="Title suggestions:")],
title="AI Keywords to Title Generator",
#description="Turn keywords into creative suggestions",
article="AI Creative Title Generator
With just keywords, generate a list of creative titles.Click on Submit to generate more title options.Tweak slider for less or more creative titlesCheck 'diversity' to turn on diversity beam searchAI Model:
T5 Model trained on a dataset of titles and related keywordsOriginal model id: EnglishVoice/t5-base-keywords-to-headline by English Voice AI LabsDefault parameter details:
Temperature = 1.2, no_repeat_ngram_size=3, top_k = 15, penalty_alpha = 0.8, max_new_tokens = 30Diversity beam search params:
num_beams=20, diversity_penalty=0.8, num_beam_groups=20 ",
flagging_mode='never'
)
iface.launch()
# In[ ]:
'''
#Create a four button panel for changing parameters with one click
def fn(text):
return ("Hello gradio!")
with gr.Blocks () as demo:
with gr.Row(variant='compact') as PanelRow1: #first row: top
with gr.Column(scale=0, min_width=180) as PanelCol5:
gr.HTML("")
with gr.Column(scale=0) as PanelCol4:
submit = gr.Button("Temp++", scale=0)
with gr.Column(scale=1) as PanelCol5:
gr.HTML("")
with gr.Row(variant='compact') as PanelRow2: #2nd row: left, right, middle
with gr.Column(min_width=100) as PanelCol1:
submit = gr.Button("Contrastive")
with gr.Column(min_width=100) as PanelCol2:
submit = gr.Button("Re-generate")
with gr.Column(min_width=100) as PanelCol3:
submit = gr.Button("Diversity Beam")
with gr.Column(min_width=100) as PanelCol5:
gr.HTML("")
with gr.Column(min_width=100) as PanelCol5:
gr.HTML("")
with gr.Column(scale=0) as PanelCol5:
gr.HTML("")
with gr.Row(variant='compact') as PanelRow3: #last row: down
with gr.Column(scale=0, min_width=180) as PanelCol7:
gr.HTML("")
with gr.Column(scale=1) as PanelCol6:
submit = gr.Button("Temp--", scale=0)
with gr.Column(scale=0) as PanelCol5:
gr.HTML("")
demo.launch()
'''