import gradio as gr from transformers import pipeline # Ensure the correct Keras package is used import tensorflow as tf import tf_keras # Define the model and the text generation function fine_tuned_model = "Amitesh007/text_generation-finetuned-gpt2" generator = pipeline('text-generation', model=fine_tuned_model) def generate(text): results = generator(text, num_return_sequences=2, max_length=100) return results[0]["generated_text"], results[1]["generated_text"] # Create the Gradio Blocks interface with gr.Blocks() as demo: gr.Markdown("# Text Generator GPT2 Pipeline") gr.Markdown("This is a fine-tuned base GPT2 model inference, trained on a small 'Game of Thrones' dataset.") with gr.Row(): with gr.Column(): input_text = gr.Textbox(lines=5, label="Input Text here....", placeholder="Type a sentence to start generating text") generate_button = gr.Button("Generate") with gr.Column(): output_text1 = gr.Textbox(label="Generated Text 1") output_text2 = gr.Textbox(label="Generated Text 2") examples = gr.Examples( examples=[["A light snow had fallen the night before, and there were"], ["The pig face had been smashed in with a mace, but Tyrion"]], inputs=input_text ) generate_button.click(fn=generate, inputs=input_text, outputs=[output_text1, output_text2], concurrency_limit=2) # Launch the interface with the max_threads parameter to control the total number of workers demo.launch(max_threads=8)