import streamlit as st from PIL import Image from transformers import AutoFeatureExtractor, AutoModelForImageClassification extractor = AutoFeatureExtractor.from_pretrained("Amite5h/convnext-tiny-finetuned-eurosat") model = AutoModelForImageClassification.from_pretrained("Amite5h/convnext-tiny-finetuned-eurosat") #pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") st.title("Hot Dog? Or Not?") file_name = st.file_uploader("Upload a hot dog candidate image") if file_name is not None: col1, col2 = st.columns(2) image = Image.open(file_name) col1.image(image, use_column_width=True) predictions = model(image) col2.header("Probabilities") for p in predictions: col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")