import streamlit as st from PIL import Image from transformers import TrOCRProcessor, VisionEncoderDecoderModel, VitsModel, AutoTokenizer import torch import yolov5 # Load YOLOv5 model @st.cache(allow_output_mutation=True) def load_model(): return yolov5.load('keremberke/yolov5m-license-plate') # Load TR-OCR model @st.cache(allow_output_mutation=True) def load_ocr_model(): processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") return processor, model # Load TTS model @st.cache(allow_output_mutation=True) def load_tts_model(): model = VitsModel.from_pretrained("facebook/mms-tts-eng") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng") return model, tokenizer # Main function for Streamlit app def main(): st.title("License Plate Recognition App") # Static test image test_image_path = "test_image.jpg" test_image = Image.open(test_image_path) st.image(test_image, caption='Test Image', use_column_width=True) # Upload file uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) # Load models on startup model = load_model() processor, ocr_model = load_ocr_model() tts_model, tokenizer = load_tts_model() if uploaded_file is not None: img = Image.open(uploaded_file) st.image(img, caption='Uploaded Image', use_column_width=True) if st.button("Run Inference"): results = model(img, size=640) # results.show() predictions = results.pred[0] boxes = predictions[:, :4] # x1, y1, x2, y2 scores = predictions[:, 4] categories = predictions[:, 5] # Crop the image of the license plate cropped_image = img.crop(tuple(results.xyxy[0][0, :4].squeeze().tolist()[:4])) st.image(cropped_image, caption='Plate detected') # Extract text from the image pixel_values = processor(cropped_image, return_tensors="pt").pixel_values generated_ids = ocr_model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] st.write("Detected License Plate Text:", generated_text) # Convert the text to audio inputs = tokenizer(generated_text, return_tensors="pt") with torch.no_grad(): output = tts_model(**inputs).waveform st.audio(output.numpy(), format="audio/wav", sample_rate=tts_model.config.sampling_rate) if __name__ == "__main__": main()