Spaces:
Building
Building
import os | |
from collections.abc import Generator | |
import pytest | |
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta | |
from core.model_runtime.entities.message_entities import ( | |
AssistantPromptMessage, | |
PromptMessageTool, | |
SystemPromptMessage, | |
UserPromptMessage, | |
) | |
from core.model_runtime.errors.validate import CredentialsValidateFailedError | |
from core.model_runtime.model_providers.xinference.llm.llm import XinferenceAILargeLanguageModel | |
"""FOR MOCK FIXTURES, DO NOT REMOVE""" | |
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock | |
from tests.integration_tests.model_runtime.__mock.xinference import setup_xinference_mock | |
def test_validate_credentials_for_chat_model(setup_openai_mock, setup_xinference_mock): | |
model = XinferenceAILargeLanguageModel() | |
with pytest.raises(CredentialsValidateFailedError): | |
model.validate_credentials( | |
model="ChatGLM3", | |
credentials={ | |
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), | |
"model_uid": "www " + os.environ.get("XINFERENCE_CHAT_MODEL_UID"), | |
}, | |
) | |
with pytest.raises(CredentialsValidateFailedError): | |
model.validate_credentials(model="aaaaa", credentials={"server_url": "", "model_uid": ""}) | |
model.validate_credentials( | |
model="ChatGLM3", | |
credentials={ | |
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), | |
"model_uid": os.environ.get("XINFERENCE_CHAT_MODEL_UID"), | |
}, | |
) | |
def test_invoke_chat_model(setup_openai_mock, setup_xinference_mock): | |
model = XinferenceAILargeLanguageModel() | |
response = model.invoke( | |
model="ChatGLM3", | |
credentials={ | |
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), | |
"model_uid": os.environ.get("XINFERENCE_CHAT_MODEL_UID"), | |
}, | |
prompt_messages=[ | |
SystemPromptMessage( | |
content="You are a helpful AI assistant.", | |
), | |
UserPromptMessage(content="Hello World!"), | |
], | |
model_parameters={ | |
"temperature": 0.7, | |
"top_p": 1.0, | |
}, | |
stop=["you"], | |
user="abc-123", | |
stream=False, | |
) | |
assert isinstance(response, LLMResult) | |
assert len(response.message.content) > 0 | |
assert response.usage.total_tokens > 0 | |
def test_invoke_stream_chat_model(setup_openai_mock, setup_xinference_mock): | |
model = XinferenceAILargeLanguageModel() | |
response = model.invoke( | |
model="ChatGLM3", | |
credentials={ | |
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), | |
"model_uid": os.environ.get("XINFERENCE_CHAT_MODEL_UID"), | |
}, | |
prompt_messages=[ | |
SystemPromptMessage( | |
content="You are a helpful AI assistant.", | |
), | |
UserPromptMessage(content="Hello World!"), | |
], | |
model_parameters={ | |
"temperature": 0.7, | |
"top_p": 1.0, | |
}, | |
stop=["you"], | |
stream=True, | |
user="abc-123", | |
) | |
assert isinstance(response, Generator) | |
for chunk in response: | |
assert isinstance(chunk, LLMResultChunk) | |
assert isinstance(chunk.delta, LLMResultChunkDelta) | |
assert isinstance(chunk.delta.message, AssistantPromptMessage) | |
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True | |
""" | |
Function calling of xinference does not support stream mode currently | |
""" | |
# def test_invoke_stream_chat_model_with_functions(): | |
# model = XinferenceAILargeLanguageModel() | |
# response = model.invoke( | |
# model='ChatGLM3-6b', | |
# credentials={ | |
# 'server_url': os.environ.get('XINFERENCE_SERVER_URL'), | |
# 'model_type': 'text-generation', | |
# 'model_name': 'ChatGLM3', | |
# 'model_uid': os.environ.get('XINFERENCE_CHAT_MODEL_UID') | |
# }, | |
# prompt_messages=[ | |
# SystemPromptMessage( | |
# content='你是一个天气机器人,可以通过调用函数来获取天气信息', | |
# ), | |
# UserPromptMessage( | |
# content='波士顿天气如何?' | |
# ) | |
# ], | |
# model_parameters={ | |
# 'temperature': 0, | |
# 'top_p': 1.0, | |
# }, | |
# stop=['you'], | |
# user='abc-123', | |
# stream=True, | |
# tools=[ | |
# PromptMessageTool( | |
# name='get_current_weather', | |
# description='Get the current weather in a given location', | |
# parameters={ | |
# "type": "object", | |
# "properties": { | |
# "location": { | |
# "type": "string", | |
# "description": "The city and state e.g. San Francisco, CA" | |
# }, | |
# "unit": { | |
# "type": "string", | |
# "enum": ["celsius", "fahrenheit"] | |
# } | |
# }, | |
# "required": [ | |
# "location" | |
# ] | |
# } | |
# ) | |
# ] | |
# ) | |
# assert isinstance(response, Generator) | |
# call: LLMResultChunk = None | |
# chunks = [] | |
# for chunk in response: | |
# chunks.append(chunk) | |
# assert isinstance(chunk, LLMResultChunk) | |
# assert isinstance(chunk.delta, LLMResultChunkDelta) | |
# assert isinstance(chunk.delta.message, AssistantPromptMessage) | |
# assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True | |
# if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0: | |
# call = chunk | |
# break | |
# assert call is not None | |
# assert call.delta.message.tool_calls[0].function.name == 'get_current_weather' | |
# def test_invoke_chat_model_with_functions(): | |
# model = XinferenceAILargeLanguageModel() | |
# response = model.invoke( | |
# model='ChatGLM3-6b', | |
# credentials={ | |
# 'server_url': os.environ.get('XINFERENCE_SERVER_URL'), | |
# 'model_type': 'text-generation', | |
# 'model_name': 'ChatGLM3', | |
# 'model_uid': os.environ.get('XINFERENCE_CHAT_MODEL_UID') | |
# }, | |
# prompt_messages=[ | |
# UserPromptMessage( | |
# content='What is the weather like in San Francisco?' | |
# ) | |
# ], | |
# model_parameters={ | |
# 'temperature': 0.7, | |
# 'top_p': 1.0, | |
# }, | |
# stop=['you'], | |
# user='abc-123', | |
# stream=False, | |
# tools=[ | |
# PromptMessageTool( | |
# name='get_current_weather', | |
# description='Get the current weather in a given location', | |
# parameters={ | |
# "type": "object", | |
# "properties": { | |
# "location": { | |
# "type": "string", | |
# "description": "The city and state e.g. San Francisco, CA" | |
# }, | |
# "unit": { | |
# "type": "string", | |
# "enum": [ | |
# "c", | |
# "f" | |
# ] | |
# } | |
# }, | |
# "required": [ | |
# "location" | |
# ] | |
# } | |
# ) | |
# ] | |
# ) | |
# assert isinstance(response, LLMResult) | |
# assert len(response.message.content) > 0 | |
# assert response.usage.total_tokens > 0 | |
# assert response.message.tool_calls[0].function.name == 'get_current_weather' | |
def test_validate_credentials_for_generation_model(setup_openai_mock, setup_xinference_mock): | |
model = XinferenceAILargeLanguageModel() | |
with pytest.raises(CredentialsValidateFailedError): | |
model.validate_credentials( | |
model="alapaca", | |
credentials={ | |
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), | |
"model_uid": "www " + os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), | |
}, | |
) | |
with pytest.raises(CredentialsValidateFailedError): | |
model.validate_credentials(model="alapaca", credentials={"server_url": "", "model_uid": ""}) | |
model.validate_credentials( | |
model="alapaca", | |
credentials={ | |
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), | |
"model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), | |
}, | |
) | |
def test_invoke_generation_model(setup_openai_mock, setup_xinference_mock): | |
model = XinferenceAILargeLanguageModel() | |
response = model.invoke( | |
model="alapaca", | |
credentials={ | |
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), | |
"model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), | |
}, | |
prompt_messages=[UserPromptMessage(content="the United States is")], | |
model_parameters={ | |
"temperature": 0.7, | |
"top_p": 1.0, | |
}, | |
stop=["you"], | |
user="abc-123", | |
stream=False, | |
) | |
assert isinstance(response, LLMResult) | |
assert len(response.message.content) > 0 | |
assert response.usage.total_tokens > 0 | |
def test_invoke_stream_generation_model(setup_openai_mock, setup_xinference_mock): | |
model = XinferenceAILargeLanguageModel() | |
response = model.invoke( | |
model="alapaca", | |
credentials={ | |
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), | |
"model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), | |
}, | |
prompt_messages=[UserPromptMessage(content="the United States is")], | |
model_parameters={ | |
"temperature": 0.7, | |
"top_p": 1.0, | |
}, | |
stop=["you"], | |
stream=True, | |
user="abc-123", | |
) | |
assert isinstance(response, Generator) | |
for chunk in response: | |
assert isinstance(chunk, LLMResultChunk) | |
assert isinstance(chunk.delta, LLMResultChunkDelta) | |
assert isinstance(chunk.delta.message, AssistantPromptMessage) | |
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True | |
def test_get_num_tokens(): | |
model = XinferenceAILargeLanguageModel() | |
num_tokens = model.get_num_tokens( | |
model="ChatGLM3", | |
credentials={ | |
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), | |
"model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), | |
}, | |
prompt_messages=[ | |
SystemPromptMessage( | |
content="You are a helpful AI assistant.", | |
), | |
UserPromptMessage(content="Hello World!"), | |
], | |
tools=[ | |
PromptMessageTool( | |
name="get_current_weather", | |
description="Get the current weather in a given location", | |
parameters={ | |
"type": "object", | |
"properties": { | |
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, | |
"unit": {"type": "string", "enum": ["c", "f"]}, | |
}, | |
"required": ["location"], | |
}, | |
) | |
], | |
) | |
assert isinstance(num_tokens, int) | |
assert num_tokens == 77 | |
num_tokens = model.get_num_tokens( | |
model="ChatGLM3", | |
credentials={ | |
"server_url": os.environ.get("XINFERENCE_SERVER_URL"), | |
"model_uid": os.environ.get("XINFERENCE_GENERATION_MODEL_UID"), | |
}, | |
prompt_messages=[ | |
SystemPromptMessage( | |
content="You are a helpful AI assistant.", | |
), | |
UserPromptMessage(content="Hello World!"), | |
], | |
) | |
assert isinstance(num_tokens, int) | |
assert num_tokens == 21 | |