Spaces:
Building
Building
import os | |
from collections.abc import Generator | |
import pytest | |
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta | |
from core.model_runtime.entities.message_entities import ( | |
AssistantPromptMessage, | |
PromptMessageTool, | |
SystemPromptMessage, | |
UserPromptMessage, | |
) | |
from core.model_runtime.entities.model_entities import AIModelEntity | |
from core.model_runtime.errors.validate import CredentialsValidateFailedError | |
from core.model_runtime.model_providers.x.llm.llm import XAILargeLanguageModel | |
"""FOR MOCK FIXTURES, DO NOT REMOVE""" | |
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock | |
def test_predefined_models(): | |
model = XAILargeLanguageModel() | |
model_schemas = model.predefined_models() | |
assert len(model_schemas) >= 1 | |
assert isinstance(model_schemas[0], AIModelEntity) | |
def test_validate_credentials_for_chat_model(setup_openai_mock): | |
model = XAILargeLanguageModel() | |
with pytest.raises(CredentialsValidateFailedError): | |
# model name to gpt-3.5-turbo because of mocking | |
model.validate_credentials( | |
model="gpt-3.5-turbo", | |
credentials={"api_key": "invalid_key", "endpoint_url": os.environ.get("XAI_API_BASE"), "mode": "chat"}, | |
) | |
model.validate_credentials( | |
model="grok-beta", | |
credentials={ | |
"api_key": os.environ.get("XAI_API_KEY"), | |
"endpoint_url": os.environ.get("XAI_API_BASE"), | |
"mode": "chat", | |
}, | |
) | |
def test_invoke_chat_model(setup_openai_mock): | |
model = XAILargeLanguageModel() | |
result = model.invoke( | |
model="grok-beta", | |
credentials={ | |
"api_key": os.environ.get("XAI_API_KEY"), | |
"endpoint_url": os.environ.get("XAI_API_BASE"), | |
"mode": "chat", | |
}, | |
prompt_messages=[ | |
SystemPromptMessage( | |
content="You are a helpful AI assistant.", | |
), | |
UserPromptMessage(content="Hello World!"), | |
], | |
model_parameters={ | |
"temperature": 0.0, | |
"top_p": 1.0, | |
"presence_penalty": 0.0, | |
"frequency_penalty": 0.0, | |
"max_tokens": 10, | |
}, | |
stop=["How"], | |
stream=False, | |
user="foo", | |
) | |
assert isinstance(result, LLMResult) | |
assert len(result.message.content) > 0 | |
def test_invoke_chat_model_with_tools(setup_openai_mock): | |
model = XAILargeLanguageModel() | |
result = model.invoke( | |
model="grok-beta", | |
credentials={ | |
"api_key": os.environ.get("XAI_API_KEY"), | |
"endpoint_url": os.environ.get("XAI_API_BASE"), | |
"mode": "chat", | |
}, | |
prompt_messages=[ | |
SystemPromptMessage( | |
content="You are a helpful AI assistant.", | |
), | |
UserPromptMessage( | |
content="what's the weather today in London?", | |
), | |
], | |
model_parameters={"temperature": 0.0, "max_tokens": 100}, | |
tools=[ | |
PromptMessageTool( | |
name="get_weather", | |
description="Determine weather in my location", | |
parameters={ | |
"type": "object", | |
"properties": { | |
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, | |
"unit": {"type": "string", "enum": ["c", "f"]}, | |
}, | |
"required": ["location"], | |
}, | |
), | |
PromptMessageTool( | |
name="get_stock_price", | |
description="Get the current stock price", | |
parameters={ | |
"type": "object", | |
"properties": {"symbol": {"type": "string", "description": "The stock symbol"}}, | |
"required": ["symbol"], | |
}, | |
), | |
], | |
stream=False, | |
user="foo", | |
) | |
assert isinstance(result, LLMResult) | |
assert isinstance(result.message, AssistantPromptMessage) | |
def test_invoke_stream_chat_model(setup_openai_mock): | |
model = XAILargeLanguageModel() | |
result = model.invoke( | |
model="grok-beta", | |
credentials={ | |
"api_key": os.environ.get("XAI_API_KEY"), | |
"endpoint_url": os.environ.get("XAI_API_BASE"), | |
"mode": "chat", | |
}, | |
prompt_messages=[ | |
SystemPromptMessage( | |
content="You are a helpful AI assistant.", | |
), | |
UserPromptMessage(content="Hello World!"), | |
], | |
model_parameters={"temperature": 0.0, "max_tokens": 100}, | |
stream=True, | |
user="foo", | |
) | |
assert isinstance(result, Generator) | |
for chunk in result: | |
assert isinstance(chunk, LLMResultChunk) | |
assert isinstance(chunk.delta, LLMResultChunkDelta) | |
assert isinstance(chunk.delta.message, AssistantPromptMessage) | |
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True | |
if chunk.delta.finish_reason is not None: | |
assert chunk.delta.usage is not None | |
assert chunk.delta.usage.completion_tokens > 0 | |
def test_get_num_tokens(): | |
model = XAILargeLanguageModel() | |
num_tokens = model.get_num_tokens( | |
model="grok-beta", | |
credentials={"api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE")}, | |
prompt_messages=[UserPromptMessage(content="Hello World!")], | |
) | |
assert num_tokens == 10 | |
num_tokens = model.get_num_tokens( | |
model="grok-beta", | |
credentials={"api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE")}, | |
prompt_messages=[ | |
SystemPromptMessage( | |
content="You are a helpful AI assistant.", | |
), | |
UserPromptMessage(content="Hello World!"), | |
], | |
tools=[ | |
PromptMessageTool( | |
name="get_weather", | |
description="Determine weather in my location", | |
parameters={ | |
"type": "object", | |
"properties": { | |
"location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"}, | |
"unit": {"type": "string", "enum": ["c", "f"]}, | |
}, | |
"required": ["location"], | |
}, | |
), | |
], | |
) | |
assert num_tokens == 77 | |