Spaces:
Paused
Paused
| import json | |
| from abc import ABC, abstractmethod | |
| from collections.abc import Generator | |
| from typing import Optional, Union | |
| from core.agent.base_agent_runner import BaseAgentRunner | |
| from core.agent.entities import AgentScratchpadUnit | |
| from core.agent.output_parser.cot_output_parser import CotAgentOutputParser | |
| from core.app.apps.base_app_queue_manager import PublishFrom | |
| from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent | |
| from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage | |
| from core.model_runtime.entities.message_entities import ( | |
| AssistantPromptMessage, | |
| PromptMessage, | |
| ToolPromptMessage, | |
| UserPromptMessage, | |
| ) | |
| from core.ops.ops_trace_manager import TraceQueueManager | |
| from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform | |
| from core.tools.entities.tool_entities import ToolInvokeMeta | |
| from core.tools.tool.tool import Tool | |
| from core.tools.tool_engine import ToolEngine | |
| from models.model import Message | |
| class CotAgentRunner(BaseAgentRunner, ABC): | |
| _is_first_iteration = True | |
| _ignore_observation_providers = ["wenxin"] | |
| _historic_prompt_messages: list[PromptMessage] = None | |
| _agent_scratchpad: list[AgentScratchpadUnit] = None | |
| _instruction: str = None | |
| _query: str = None | |
| _prompt_messages_tools: list[PromptMessage] = None | |
| def run( | |
| self, | |
| message: Message, | |
| query: str, | |
| inputs: dict[str, str], | |
| ) -> Union[Generator, LLMResult]: | |
| """ | |
| Run Cot agent application | |
| """ | |
| app_generate_entity = self.application_generate_entity | |
| self._repack_app_generate_entity(app_generate_entity) | |
| self._init_react_state(query) | |
| trace_manager = app_generate_entity.trace_manager | |
| # check model mode | |
| if "Observation" not in app_generate_entity.model_conf.stop: | |
| if app_generate_entity.model_conf.provider not in self._ignore_observation_providers: | |
| app_generate_entity.model_conf.stop.append("Observation") | |
| app_config = self.app_config | |
| # init instruction | |
| inputs = inputs or {} | |
| instruction = app_config.prompt_template.simple_prompt_template | |
| self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs) | |
| iteration_step = 1 | |
| max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1 | |
| # convert tools into ModelRuntime Tool format | |
| tool_instances, self._prompt_messages_tools = self._init_prompt_tools() | |
| function_call_state = True | |
| llm_usage = {"usage": None} | |
| final_answer = "" | |
| def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage): | |
| if not final_llm_usage_dict["usage"]: | |
| final_llm_usage_dict["usage"] = usage | |
| else: | |
| llm_usage = final_llm_usage_dict["usage"] | |
| llm_usage.prompt_tokens += usage.prompt_tokens | |
| llm_usage.completion_tokens += usage.completion_tokens | |
| llm_usage.prompt_price += usage.prompt_price | |
| llm_usage.completion_price += usage.completion_price | |
| llm_usage.total_price += usage.total_price | |
| model_instance = self.model_instance | |
| while function_call_state and iteration_step <= max_iteration_steps: | |
| # continue to run until there is not any tool call | |
| function_call_state = False | |
| if iteration_step == max_iteration_steps: | |
| # the last iteration, remove all tools | |
| self._prompt_messages_tools = [] | |
| message_file_ids = [] | |
| agent_thought = self.create_agent_thought( | |
| message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids | |
| ) | |
| if iteration_step > 1: | |
| self.queue_manager.publish( | |
| QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER | |
| ) | |
| # recalc llm max tokens | |
| prompt_messages = self._organize_prompt_messages() | |
| self.recalc_llm_max_tokens(self.model_config, prompt_messages) | |
| # invoke model | |
| chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm( | |
| prompt_messages=prompt_messages, | |
| model_parameters=app_generate_entity.model_conf.parameters, | |
| tools=[], | |
| stop=app_generate_entity.model_conf.stop, | |
| stream=True, | |
| user=self.user_id, | |
| callbacks=[], | |
| ) | |
| # check llm result | |
| if not chunks: | |
| raise ValueError("failed to invoke llm") | |
| usage_dict = {} | |
| react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict) | |
| scratchpad = AgentScratchpadUnit( | |
| agent_response="", | |
| thought="", | |
| action_str="", | |
| observation="", | |
| action=None, | |
| ) | |
| # publish agent thought if it's first iteration | |
| if iteration_step == 1: | |
| self.queue_manager.publish( | |
| QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER | |
| ) | |
| for chunk in react_chunks: | |
| if isinstance(chunk, AgentScratchpadUnit.Action): | |
| action = chunk | |
| # detect action | |
| scratchpad.agent_response += json.dumps(chunk.model_dump()) | |
| scratchpad.action_str = json.dumps(chunk.model_dump()) | |
| scratchpad.action = action | |
| else: | |
| scratchpad.agent_response += chunk | |
| scratchpad.thought += chunk | |
| yield LLMResultChunk( | |
| model=self.model_config.model, | |
| prompt_messages=prompt_messages, | |
| system_fingerprint="", | |
| delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None), | |
| ) | |
| scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you" | |
| self._agent_scratchpad.append(scratchpad) | |
| # get llm usage | |
| if "usage" in usage_dict: | |
| increase_usage(llm_usage, usage_dict["usage"]) | |
| else: | |
| usage_dict["usage"] = LLMUsage.empty_usage() | |
| self.save_agent_thought( | |
| agent_thought=agent_thought, | |
| tool_name=scratchpad.action.action_name if scratchpad.action else "", | |
| tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {}, | |
| tool_invoke_meta={}, | |
| thought=scratchpad.thought, | |
| observation="", | |
| answer=scratchpad.agent_response, | |
| messages_ids=[], | |
| llm_usage=usage_dict["usage"], | |
| ) | |
| if not scratchpad.is_final(): | |
| self.queue_manager.publish( | |
| QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER | |
| ) | |
| if not scratchpad.action: | |
| # failed to extract action, return final answer directly | |
| final_answer = "" | |
| else: | |
| if scratchpad.action.action_name.lower() == "final answer": | |
| # action is final answer, return final answer directly | |
| try: | |
| if isinstance(scratchpad.action.action_input, dict): | |
| final_answer = json.dumps(scratchpad.action.action_input) | |
| elif isinstance(scratchpad.action.action_input, str): | |
| final_answer = scratchpad.action.action_input | |
| else: | |
| final_answer = f"{scratchpad.action.action_input}" | |
| except json.JSONDecodeError: | |
| final_answer = f"{scratchpad.action.action_input}" | |
| else: | |
| function_call_state = True | |
| # action is tool call, invoke tool | |
| tool_invoke_response, tool_invoke_meta = self._handle_invoke_action( | |
| action=scratchpad.action, | |
| tool_instances=tool_instances, | |
| message_file_ids=message_file_ids, | |
| trace_manager=trace_manager, | |
| ) | |
| scratchpad.observation = tool_invoke_response | |
| scratchpad.agent_response = tool_invoke_response | |
| self.save_agent_thought( | |
| agent_thought=agent_thought, | |
| tool_name=scratchpad.action.action_name, | |
| tool_input={scratchpad.action.action_name: scratchpad.action.action_input}, | |
| thought=scratchpad.thought, | |
| observation={scratchpad.action.action_name: tool_invoke_response}, | |
| tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()}, | |
| answer=scratchpad.agent_response, | |
| messages_ids=message_file_ids, | |
| llm_usage=usage_dict["usage"], | |
| ) | |
| self.queue_manager.publish( | |
| QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER | |
| ) | |
| # update prompt tool message | |
| for prompt_tool in self._prompt_messages_tools: | |
| self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool) | |
| iteration_step += 1 | |
| yield LLMResultChunk( | |
| model=model_instance.model, | |
| prompt_messages=prompt_messages, | |
| delta=LLMResultChunkDelta( | |
| index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"] | |
| ), | |
| system_fingerprint="", | |
| ) | |
| # save agent thought | |
| self.save_agent_thought( | |
| agent_thought=agent_thought, | |
| tool_name="", | |
| tool_input={}, | |
| tool_invoke_meta={}, | |
| thought=final_answer, | |
| observation={}, | |
| answer=final_answer, | |
| messages_ids=[], | |
| ) | |
| self.update_db_variables(self.variables_pool, self.db_variables_pool) | |
| # publish end event | |
| self.queue_manager.publish( | |
| QueueMessageEndEvent( | |
| llm_result=LLMResult( | |
| model=model_instance.model, | |
| prompt_messages=prompt_messages, | |
| message=AssistantPromptMessage(content=final_answer), | |
| usage=llm_usage["usage"] or LLMUsage.empty_usage(), | |
| system_fingerprint="", | |
| ) | |
| ), | |
| PublishFrom.APPLICATION_MANAGER, | |
| ) | |
| def _handle_invoke_action( | |
| self, | |
| action: AgentScratchpadUnit.Action, | |
| tool_instances: dict[str, Tool], | |
| message_file_ids: list[str], | |
| trace_manager: Optional[TraceQueueManager] = None, | |
| ) -> tuple[str, ToolInvokeMeta]: | |
| """ | |
| handle invoke action | |
| :param action: action | |
| :param tool_instances: tool instances | |
| :param message_file_ids: message file ids | |
| :param trace_manager: trace manager | |
| :return: observation, meta | |
| """ | |
| # action is tool call, invoke tool | |
| tool_call_name = action.action_name | |
| tool_call_args = action.action_input | |
| tool_instance = tool_instances.get(tool_call_name) | |
| if not tool_instance: | |
| answer = f"there is not a tool named {tool_call_name}" | |
| return answer, ToolInvokeMeta.error_instance(answer) | |
| if isinstance(tool_call_args, str): | |
| try: | |
| tool_call_args = json.loads(tool_call_args) | |
| except json.JSONDecodeError: | |
| pass | |
| # invoke tool | |
| tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke( | |
| tool=tool_instance, | |
| tool_parameters=tool_call_args, | |
| user_id=self.user_id, | |
| tenant_id=self.tenant_id, | |
| message=self.message, | |
| invoke_from=self.application_generate_entity.invoke_from, | |
| agent_tool_callback=self.agent_callback, | |
| trace_manager=trace_manager, | |
| ) | |
| # publish files | |
| for message_file_id, save_as in message_files: | |
| if save_as: | |
| self.variables_pool.set_file(tool_name=tool_call_name, value=message_file_id, name=save_as) | |
| # publish message file | |
| self.queue_manager.publish( | |
| QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER | |
| ) | |
| # add message file ids | |
| message_file_ids.append(message_file_id) | |
| return tool_invoke_response, tool_invoke_meta | |
| def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action: | |
| """ | |
| convert dict to action | |
| """ | |
| return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"]) | |
| def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str: | |
| """ | |
| fill in inputs from external data tools | |
| """ | |
| for key, value in inputs.items(): | |
| try: | |
| instruction = instruction.replace(f"{{{{{key}}}}}", str(value)) | |
| except Exception as e: | |
| continue | |
| return instruction | |
| def _init_react_state(self, query) -> None: | |
| """ | |
| init agent scratchpad | |
| """ | |
| self._query = query | |
| self._agent_scratchpad = [] | |
| self._historic_prompt_messages = self._organize_historic_prompt_messages() | |
| def _organize_prompt_messages(self) -> list[PromptMessage]: | |
| """ | |
| organize prompt messages | |
| """ | |
| def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str: | |
| """ | |
| format assistant message | |
| """ | |
| message = "" | |
| for scratchpad in agent_scratchpad: | |
| if scratchpad.is_final(): | |
| message += f"Final Answer: {scratchpad.agent_response}" | |
| else: | |
| message += f"Thought: {scratchpad.thought}\n\n" | |
| if scratchpad.action_str: | |
| message += f"Action: {scratchpad.action_str}\n\n" | |
| if scratchpad.observation: | |
| message += f"Observation: {scratchpad.observation}\n\n" | |
| return message | |
| def _organize_historic_prompt_messages( | |
| self, current_session_messages: Optional[list[PromptMessage]] = None | |
| ) -> list[PromptMessage]: | |
| """ | |
| organize historic prompt messages | |
| """ | |
| result: list[PromptMessage] = [] | |
| scratchpads: list[AgentScratchpadUnit] = [] | |
| current_scratchpad: AgentScratchpadUnit = None | |
| for message in self.history_prompt_messages: | |
| if isinstance(message, AssistantPromptMessage): | |
| if not current_scratchpad: | |
| current_scratchpad = AgentScratchpadUnit( | |
| agent_response=message.content, | |
| thought=message.content or "I am thinking about how to help you", | |
| action_str="", | |
| action=None, | |
| observation=None, | |
| ) | |
| scratchpads.append(current_scratchpad) | |
| if message.tool_calls: | |
| try: | |
| current_scratchpad.action = AgentScratchpadUnit.Action( | |
| action_name=message.tool_calls[0].function.name, | |
| action_input=json.loads(message.tool_calls[0].function.arguments), | |
| ) | |
| current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict()) | |
| except: | |
| pass | |
| elif isinstance(message, ToolPromptMessage): | |
| if current_scratchpad: | |
| current_scratchpad.observation = message.content | |
| elif isinstance(message, UserPromptMessage): | |
| if scratchpads: | |
| result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads))) | |
| scratchpads = [] | |
| current_scratchpad = None | |
| result.append(message) | |
| if scratchpads: | |
| result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads))) | |
| historic_prompts = AgentHistoryPromptTransform( | |
| model_config=self.model_config, | |
| prompt_messages=current_session_messages or [], | |
| history_messages=result, | |
| memory=self.memory, | |
| ).get_prompt() | |
| return historic_prompts | |