import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM model_checkpoint = "distilgpt2" model_checkpoint_amal = "Amal17/wikipedia-20230601.ace" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_checkpoint_amal, trust_remote_code=True ) model.eval() def generate(input): inputs = tokenizer(input, return_tensors="pt") r = model.generate( inputs=inputs.input_ids, # streamer=streamer, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, # max_length=256, # temperature=0.7, # do_sample=True, # # top_k=4, # top_p=0.95 max_new_tokens=35 ) output = tokenizer.decode(r[0]) return output iface = gr.Interface(fn=generate, inputs="text", outputs="text") iface.launch()