import gradio as gr from database import create_db from functions import * from functions import _generate_code # Supported models models_options_general = ['GPT2', 'GPT2-medium', 'GPT2-large', 'GPT2-persian', 'GPT-Neo-125M'] models_options_codegen = ['codegen'] models_options_chatbot = ['dialoGPT', 'dialoGPT-medium', 'dialoGPT-large'] # Create database create_db() # Interface setup with gr.Blocks() as interface: gr.Markdown( "# **GPT Tools**\n\n" "Generate something using GPT models. Select the model and adjust the parameters for optimal results." ) with gr.Tabs(): with gr.Tab("Text Generator"): with gr.Row(): with gr.Column(scale=1, min_width=350): input_text = gr.Textbox(label="Input Text", placeholder="Enter your text here...", lines=4, max_lines=6) selected_model = gr.Radio(choices=models_options_general, value="GPT2", label="Select Model", type="value") with gr.Row(): max_tokens = gr.Slider(10, 100, value=50, step=1, label="Max New Tokens", interactive=True) with gr.Column(scale=1, min_width=350): output_text = gr.Textbox(label="Generated Text", interactive=False, lines=8, max_lines=12) generate_button = gr.Button("Generate Text", variant="primary") generate_button.click( generate, inputs=[input_text, selected_model, max_tokens], outputs=output_text, ) with gr.Tab("Multiverse Story Generator"): with gr.Row(): with gr.Column(scale=1, min_width=350): input_text = gr.Textbox(label="Enter your story idea", placeholder="e.g. A scientist discovers a parallel universe...", lines=4, max_lines=6) selected_model = gr.Radio(choices=models_options_general, value="GPT2", label="Select Model for Story Generation", type="value") max_length = gr.Slider(50, 300, value=150, step=1, label="Max Length", interactive=True) with gr.Column(scale=1, min_width=350): output_text = gr.Textbox(label="Generated Worlds", interactive=False, lines=12, max_lines=20) generate_button = gr.Button("Generate Parallel Worlds", variant="primary") generate_button.click( generate_multiverse, inputs=[input_text, selected_model, max_length], outputs=output_text, ) with gr.Tab("Interactive Story Writing"): with gr.Row(): with gr.Column(scale=1, min_width=350): story_input = gr.Textbox(label="Add to Story", placeholder="Enter your part of the story...", lines=4, max_lines=6) story_model = gr.Radio(choices=models_options_general, value="GPT2", label="Select Model", type="value") story_max_length = gr.Slider(50, 300, value=50, step=1, label="Max Length", interactive=True) with gr.Column(scale=1, min_width=350): story_text = gr.Textbox(label="Story So Far", interactive=False, lines=12, max_lines=20) story_button = gr.Button("Generate Next Part", variant="primary") reset_button = gr.Button("Reset Story", variant="secondary") story_button.click( interactive_story, inputs=[story_input, story_model, story_max_length], outputs=story_text, ) reset_button.click( reset_story, inputs=[], outputs=story_text, ) with gr.Tab("Training"): gr.Markdown("# **Train Model**\n\n") with gr.Column(scale=1, min_width=250): train_model_selector = gr.Radio(choices=models_options_general, value="GPT2", label="Select Model for Training", type="value") train_method = gr.Radio( choices=["Custom Text", "Database", "Dataset File", "Hugging Face Dataset"], value="Custom Text", label="Training Method", type="value" ) dataset_name = gr.Textbox(label="Hugging Face Dataset Name", placeholder="Enter dataset name (e.g., ag_news)") split_name = gr.Textbox(label="Dataset Split", placeholder="e.g., train, test, validation") epochs = gr.Slider(1, 100, value=10, step=1, label="Epochs", interactive=True) batch_size = gr.Slider(1, 100, value=8, step=1, label="Batch Size", interactive=True) password = gr.Textbox(label="Enter Training Password", placeholder="Enter password", type="password") custom_text = gr.Textbox(label="Custom Text (optional)", placeholder="Enter custom text for training...") dataset_file = gr.File(label="Upload Dataset", type="filepath", file_types=[".parquet", ".csv", ".json", ".txt"]) train_button = gr.Button("Train Model", variant="primary") train_status = gr.Textbox(label="Training Status", interactive=False) train_button.click( verify_and_train_combined, inputs=[train_model_selector, train_method, epochs, batch_size, password, custom_text, dataset_file, dataset_name, split_name], outputs=train_status, ) train_button.click( verify_and_train_combined, inputs=[train_model_selector, train_method, epochs, batch_size, password, custom_text, dataset_file, dataset_name, split_name], outputs=train_status, ) with gr.Tab("Code Generator"): gr.Markdown("### Generate Code from Descriptions") with gr.Row(): with gr.Column(scale=1, min_width=350): code_prompt = gr.Textbox(label="Code Prompt", placeholder="Describe your coding task, e.g., 'Write a Python function to calculate Fibonacci numbers.'") code_max_tokens = gr.Slider(10, 500, value=150, step=10, label="Max Tokens") with gr.Column(scale=1, min_width=350): generated_code = gr.Textbox(label="Generated Code", interactive=False, lines=10, max_lines=20) generate_code_button = gr.Button("Generate Code", variant="primary") generate_code_button.click( _generate_code, inputs=[code_prompt, code_max_tokens], outputs=generated_code, ) # Add AI-Powered Story World Builder Tab with gr.Tab("Story World Builder"): with gr.Row(): with gr.Column(scale=1, min_width=350): world_name = gr.Textbox(label="World Name", placeholder="Enter your world name...") locations = gr.Textbox(label="Locations", placeholder="Enter locations separated by commas...") characters = gr.Textbox(label="Characters", placeholder="Enter characters separated by commas...") create_button = gr.Button("Create World", variant='primary') generate_story_button = gr.Button("Generate Story") with gr.Column(scale=1, min_width=350): world_status = gr.Textbox(label="World Status", interactive=False) generated_story = gr.Textbox(label="Generated Story", interactive=False, lines=12, max_lines=20) create_button.click( define_world, inputs=[world_name, locations, characters], outputs=world_status, ) gr.Markdown("### Generate a Story in Your World") with gr.Row(): with gr.Column(scale=1, min_width=350): story_world = gr.Textbox(label="Enter World Name", placeholder="World name...") event = gr.Textbox(label="Event", placeholder="Describe an event in the world...") selected_model = gr.Radio(choices=models_options_general, value="GPT2", label="Select Model", type="value") max_length = gr.Slider(50, 300, value=150, step=1, label="Max Length") with gr.Tab("Chatbot"): gr.Markdown("### **Chat With AI Models**") with gr.Row(): with gr.Column(scale=1, min_width=250): username = gr.Textbox(label="Username", placeholder="Enter your username", lines=1) chat_id = gr.Textbox(label="Chat ID (optional)", placeholder="Enter chat ID or leave blank for a new chat", lines=1) selected_model = gr.Radio(models_options_chatbot, label="Select Model", value="dialoGPT") send_button = gr.Button("Send", variant="primary") reset_button = gr.Button("Reset Chat", variant="secondary") with gr.Column(scale=1, min_width=250): input_text = gr.Textbox(label="Your Message", placeholder="Type your message here...", lines=2) emotion_output = gr.Textbox(label="Detected Emotion", interactive=False) chat_output = gr.Textbox(label="Chat History", lines=10, interactive=False) send_button.click( chatbot_response_with_emotion, inputs=[username, input_text, selected_model, chat_id], outputs=[chat_output, chat_id, emotion_output] ) reset_button.click( reset_chat, inputs=[username], outputs=[chat_output] ) gr.Markdown("---") gr.Markdown("### **Fetch Chat IDs**") with gr.Row(): with gr.Column(scale=1, min_width=250): username = gr.Textbox(label="Username", placeholder="Enter your username", lines=1) fetch_btn = gr.Button("Fetch", variant="primary") with gr.Column(scale=1, min_width=250): fetch_output = gr.Textbox(label="Chat IDs", lines=3, interactive=False) fetch_btn.click( chat_ids, inputs=[username], outputs=[fetch_output], ) generate_story_button.click( generate_story, inputs=[selected_model, story_world, max_length, event], outputs=generated_story, ) gr.Markdown("Made by **AliMc2021** with ❤️") # Launch the interface interface.queue().launch( server_port=7860, show_error=True, inline=False, #share=True, )