AlexanderBenady commited on
Commit
907840f
1 Parent(s): e6e6ad5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +203 -0
app.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ import warnings
4
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSpeechSeq2Seq, MarianMTModel, MarianTokenizer, AutoModelForSequenceClassification, AutoProcessor, pipeline
5
+ import torch
6
+ from pydub import AudioSegment
7
+ import gradio as gr
8
+
9
+ warnings.filterwarnings("ignore", category=UserWarning)
10
+ warnings.filterwarnings("ignore", message="Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.")
11
+ warnings.filterwarnings("ignore", message="Due to a bug fix in https://github.com/huggingface/transformers/pull/28687 transcription using a multilingual Whisper will default to language detection followed by transcription instead of translation to English.This might be a breaking change for your use case. If you want to instead always translate your audio to English, make sure to pass `language='en'.")
12
+
13
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
14
+
15
+ # Preload models globally
16
+
17
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
18
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
19
+
20
+ # Load all necessary models and tokenizers
21
+ summarizer_tokenizer = AutoTokenizer.from_pretrained('cranonieu2021/pegasus-on-lectures')
22
+ summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("cranonieu2021/pegasus-on-lectures", torch_dtype=torch_dtype).to(device)
23
+
24
+ translator_tokenizer = MarianTokenizer.from_pretrained("sfarjebespalaia/enestranslatorforsummaries")
25
+ translator_model = MarianMTModel.from_pretrained("sfarjebespalaia/enestranslatorforsummaries", torch_dtype=torch_dtype).to(device)
26
+
27
+ classifier_tokenizer = AutoTokenizer.from_pretrained("gserafico/roberta-base-finetuned-classifier-roberta1")
28
+ classifier_model = AutoModelForSequenceClassification.from_pretrained("gserafico/roberta-base-finetuned-classifier-roberta1", torch_dtype=torch_dtype).to(device)
29
+
30
+
31
+ def transcribe_audio(audio_file_path):
32
+ try:
33
+ model_id = "openai/whisper-large-v3"
34
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, use_safetensors=True)
35
+ model.to(device)
36
+ processor = AutoProcessor.from_pretrained(model_id)
37
+ pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=device)
38
+ result = pipe(audio_file_path)
39
+ logging.info("Audio transcription completed successfully.")
40
+ return result['text']
41
+ except Exception as e:
42
+ logging.error(f"Error transcribing audio: {e}")
43
+ raise
44
+
45
+ def load_and_process_input(file_info):
46
+ file_path = file_info # Assuming it's just the path
47
+ original_filename = os.path.basename(file_path) # Extract filename from path if needed
48
+
49
+ extension = os.path.splitext(original_filename)[-1].lower()
50
+ try:
51
+ if extension == ".txt":
52
+ with open(file_path, 'r', encoding='utf-8') as file:
53
+ text = file.read()
54
+ elif extension in [".mp3", ".wav"]:
55
+ if extension == ".mp3":
56
+ file_path = convert_mp3_to_wav(file_path)
57
+ text = transcribe_audio(file_path)
58
+ else:
59
+ raise ValueError("Unsupported file type provided.")
60
+ except Exception as e:
61
+ logging.error(f"Error processing input file: {e}")
62
+ raise
63
+ return text
64
+
65
+
66
+
67
+ # Ensure the convert_mp3_to_wav accepts and handles a file path correctly
68
+ def convert_mp3_to_wav(file_path):
69
+ try:
70
+ wav_file_path = file_path.replace(".mp3", ".wav")
71
+ audio = AudioSegment.from_file(file_path, format='mp3')
72
+ audio.export(wav_file_path, format="wav")
73
+ logging.info("MP3 file converted to WAV.")
74
+ return wav_file_path
75
+ except Exception as e:
76
+ logging.error(f"Error converting MP3 to WAV: {e}")
77
+ raise
78
+
79
+ def process_text(text, summarization=False, translation=False, classification=False):
80
+ results = {}
81
+ intermediate_text = text # This will hold either the original text or the summary
82
+
83
+ if summarization:
84
+ # Perform summarization
85
+ inputs = summarizer_tokenizer(intermediate_text, max_length=1024, return_tensors="pt", truncation=True)
86
+ summary_ids = summarizer_model.generate(inputs.input_ids, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)
87
+ summary_text = summarizer_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
88
+ results['summarized_text'] = summary_text
89
+ intermediate_text = summary_text # Update intermediate text to be the summary for further processing
90
+
91
+ if translation:
92
+ # Translate the intermediate text (which could be either the original text or the summary)
93
+ tokenized_text = translator_tokenizer.prepare_seq2seq_batch([intermediate_text], return_tensors="pt")
94
+ translated = translator_model.generate(**tokenized_text)
95
+ translated_text = ' '.join(translator_tokenizer.decode(t, skip_special_tokens=True) for t in translated)
96
+ results['translated_text'] = translated_text.strip()
97
+
98
+ if classification:
99
+ # Classify the intermediate text (which could be either the original text or the summary)
100
+ inputs = classifier_tokenizer(intermediate_text, return_tensors="pt", truncation=True, padding=True)
101
+ with torch.no_grad():
102
+ outputs = classifier_model(**inputs)
103
+ predicted_class_idx = torch.argmax(outputs.logits, dim=1).item()
104
+ labels = {
105
+ 0: 'Social Sciences',
106
+ 1: 'Arts',
107
+ 2: 'Natural Sciences',
108
+ 3: 'Business and Law',
109
+ 4: 'Engineering and Technology'
110
+ }
111
+ results['classification_result'] = labels[predicted_class_idx]
112
+
113
+ return results
114
+
115
+ def display_results(results):
116
+ if 'summarized_text' in results:
117
+ print("Summarized Text:")
118
+ print(results['summarized_text'])
119
+ if 'translated_text' in results:
120
+ print("Translated Text:")
121
+ print(results['translated_text'])
122
+ if 'classification_result' in results:
123
+ print('Classification Result:')
124
+ print(f"This text is classified under: {results['classification_result']}")
125
+
126
+ def main():
127
+ print("Loading models, please wait...")
128
+
129
+ file_path = input("Enter the path to your text, mp3, or wav file: ")
130
+ if not os.path.isfile(file_path):
131
+ print("File does not exist. Please enter a valid file path.")
132
+ return
133
+
134
+ text = load_and_process_input(file_path)
135
+
136
+ print("Choose the tasks to perform:")
137
+ print("1. Summarization")
138
+ print("2. Translation")
139
+ print("3. Classification")
140
+ print("4. Summarization + Translation")
141
+ print("5. Summarization + Classification")
142
+ print("6. Translation + Classification")
143
+ print("7. Summarization + Translation + Classification")
144
+
145
+ while True:
146
+ try:
147
+ choice = int(input("Please choose your option -> "))
148
+ if choice not in range(1, 8):
149
+ raise ValueError("Please select a valid option from 1 to 7.")
150
+ break
151
+ except ValueError as e:
152
+ print(f"Invalid input: {e}. Please try again.")
153
+
154
+ summarization = choice in [1, 4, 5, 7]
155
+ translation = choice in [2, 4, 6, 7]
156
+ classification = choice in [3, 5, 6, 7]
157
+
158
+ results = process_text(text, summarization=summarization, translation=translation, classification=classification)
159
+ display_results(results)
160
+
161
+ def wrap_process_file(file_obj, tasks):
162
+ if file_obj is None:
163
+ return "Please upload a file to proceed.", "", "", ""
164
+
165
+ # Assuming file_obj is a tuple containing (temp file path, original file name)
166
+ text = load_and_process_input(file_obj)
167
+ results = process_text(text, 'Summarization' in tasks, 'Translation' in tasks, 'Classification' in tasks)
168
+
169
+ return (results.get('summarized_text', ''),
170
+ results.get('translated_text', ''),
171
+ results.get('classification_result', ''))
172
+
173
+ css = """
174
+ body { font-family: 'Arial'; }
175
+ .gradio-container { max-width: 800px; margin: auto; padding: 20px; }
176
+ .input, .output { border-radius: 10px; box-shadow: 0 4px 14px 0 rgba(0,0,0,0.10); }
177
+ .label { color: #4A4A4A; font-weight: bold; font-size: 14px; }
178
+ button { background-color: #1a73e8; color: white; border: none; border-radius: 4px; padding: 10px 20px; cursor: pointer; }
179
+ """
180
+
181
+ def create_gradio_interface():
182
+ with gr.Blocks(css=css) as demo:
183
+ gr.Markdown("# LectorSync 1.0")
184
+ gr.Markdown("## Upload your file and select the tasks:")
185
+ with gr.Row():
186
+ file_input = gr.File(label="Upload your text, mp3, or wav file")
187
+ task_choice = gr.CheckboxGroup(["Summarization", "Translation", "Classification"], label="Select Tasks")
188
+ submit_button = gr.Button("Process")
189
+ output_summary = gr.Text(label="Summarized Text")
190
+ output_translation = gr.Text(label="Translated Text")
191
+ output_classification = gr.Text(label="Classification Result")
192
+
193
+ submit_button.click(
194
+ fn=wrap_process_file,
195
+ inputs=[file_input, task_choice],
196
+ outputs=[output_summary, output_translation, output_classification]
197
+ )
198
+
199
+ return demo
200
+
201
+ if __name__ == "__main__":
202
+ demo = create_gradio_interface()
203
+ demo.launch()