Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Проверка доступности GPU
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
|
8 |
+
# Инициализация модели для распознавания речи (ASR)
|
9 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-medium", device=0 if device.type == "cuda" else -1)
|
10 |
+
|
11 |
+
# Инициализация модели для суммаризации
|
12 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if device.type == "cuda" else -1)
|
13 |
+
|
14 |
+
# Инициализация модели для перевода
|
15 |
+
model_translation = T5ForConditionalGeneration.from_pretrained('utrobinmv/t5_translate_en_ru_zh_small_1024')
|
16 |
+
model_translation.to(device)
|
17 |
+
tokenizer_translation = T5Tokenizer.from_pretrained('utrobinmv/t5_translate_en_ru_zh_small_1024')
|
18 |
+
|
19 |
+
def transcribe_audio(audio_file):
|
20 |
+
# Преобразование аудио в текст
|
21 |
+
result = asr_pipeline(audio_file)
|
22 |
+
return result["text"]
|
23 |
+
|
24 |
+
def summarize(text, max_length=300, min_length=150):
|
25 |
+
# Суммаризация текста
|
26 |
+
result = summarizer(text, max_length=max_length, min_length=min_length, do_sample=False)
|
27 |
+
return result[0]['summary_text']
|
28 |
+
|
29 |
+
def translate(text):
|
30 |
+
# Перевод текста на русский
|
31 |
+
prefix = 'translate to ru: '
|
32 |
+
src_text = prefix + text
|
33 |
+
|
34 |
+
input_ids = tokenizer_translation(src_text, return_tensors="pt")
|
35 |
+
generated_tokens = model_translation.generate(**input_ids.to(device))
|
36 |
+
|
37 |
+
result = tokenizer_translation.batch_decode(generated_tokens, skip_special_tokens=True)
|
38 |
+
return result[0]
|
39 |
+
|
40 |
+
def process_audio(audio_file, language):
|
41 |
+
if not audio_file:
|
42 |
+
return "No input provided."
|
43 |
+
|
44 |
+
# Преобразование аудио в текст
|
45 |
+
transcribed_text = transcribe_audio(audio_file)
|
46 |
+
print(f"Transcribed Text: {transcribed_text}")
|
47 |
+
|
48 |
+
# Суммаризация текста
|
49 |
+
summary = summarize(transcribed_text)
|
50 |
+
print(f"Summary: {summary}")
|
51 |
+
|
52 |
+
# Перевод, если выбран русский язык
|
53 |
+
if language == "rus":
|
54 |
+
return translate(summary)
|
55 |
+
return summary
|
56 |
+
|
57 |
+
# Создание Gradio интерфейса
|
58 |
+
with gr.Blocks() as demo:
|
59 |
+
gr.Markdown("# Audio Summarizer and Translator")
|
60 |
+
gr.Markdown("Upload an audio file to summarize and translate (if needed).")
|
61 |
+
|
62 |
+
language = gr.Radio(choices=["rus", "eng"], label="Output Language", value="rus")
|
63 |
+
audio_input = gr.Audio(label="Upload Audio File", type="filepath")
|
64 |
+
text_output = gr.Textbox(label="Processed Text", lines=10)
|
65 |
+
process_button = gr.Button("Process Audio")
|
66 |
+
|
67 |
+
process_button.click(process_audio, inputs=[audio_input, language], outputs=text_output)
|
68 |
+
|
69 |
+
# Запуск приложения
|
70 |
+
demo.launch(debug=True)
|