Alex11-321's picture
Update app.py
2ffbc3f verified
raw
history blame
3.44 kB
from PyPDF2 import PdfReader
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
import torch
import gradio as gr
from gtts import gTTS
# Проверка доступности GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Инициализация модели для суммаризации
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if device.type == "cuda" else -1)
# Инициализация модели для перевода
model_translation = T5ForConditionalGeneration.from_pretrained('utrobinmv/t5_translate_en_ru_zh_small_1024')
model_translation.to(device)
tokenizer_translation = T5Tokenizer.from_pretrained('utrobinmv/t5_translate_en_ru_zh_small_1024')
def parse_pdf(pdf_file):
"""Функция для извлечения текста из PDF файла."""
reader = PdfReader(pdf_file)
extracted_text = ""
for page in reader.pages:
extracted_text += page.extract_text() or ""
return extracted_text
def summarize(text, max_length=1000, min_length=150):
"""Функция для суммаризации текста."""
max_length = 1000 # Можно настроить
truncated_text = text[:max_length]
result = summarizer(truncated_text, max_length=max_length, min_length=min_length, do_sample=False)
return result[0]['summary_text']
def translate(text):
"""Функция для перевода текста на русский."""
prefix = 'translate to ru: '
src_text = prefix + text
input_ids = tokenizer_translation(src_text, return_tensors="pt")
generated_tokens = model_translation.generate(**input_ids.to(device))
result = tokenizer_translation.batch_decode(generated_tokens, skip_special_tokens=True)
return result[0]
def text_to_speech(text, language='ru'):
"""Функция для преобразования текста в аудиофайл."""
tts = gTTS(text=text, lang=language)
audio_file = "output.mp3"
tts.save(audio_file)
return audio_file
def process_pdf(pdf_file):
"""Основная функция обработки PDF файла."""
if not pdf_file:
return "No input provided."
# Извлечение текста из PDF
extracted_text = parse_pdf(pdf_file)
print(f"Extracted Text: {extracted_text}")
# Суммаризация текста
summary = summarize(extracted_text)
print(f"Summary: {summary}")
# Перевод текста на русский
translated_text = translate(summary)
print(f"Translated Text: {translated_text}")
# Преобразование текста в аудио
audio_file = text_to_speech(translated_text)
return translated_text, audio_file
# Создание Gradio интерфейса
with gr.Blocks() as demo:
gr.Markdown("# PDF Summarizer, Translator, and Text-to-Speech")
gr.Markdown("Upload a PDF file to summarize, translate to Russian, and convert to audio.")
pdf_input = gr.File(label="Upload PDF File", type="filepath")
text_output = gr.Textbox(label="Translated Text", lines=10)
audio_output = gr.Audio(label="Generated Audio", type="filepath")
process_button = gr.Button("Process PDF")
process_button.click(process_pdf, inputs=pdf_input, outputs=[text_output, audio_output])
# Запуск приложения
demo.launch(debug=True)