Alesteba commited on
Commit
07da8d0
1 Parent(s): 4789b3d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -18
app.py CHANGED
@@ -1,14 +1,18 @@
1
- from huggingface_hub import from_pretrained_fastai
2
  import gradio as gr
 
3
  from fastai.basics import *
4
  from fastai.vision import models
5
  from fastai.vision.all import *
6
  from fastai.metrics import *
7
  from fastai.data.all import *
8
  from fastai.callback import *
 
9
  import PIL
10
  import torchvision.transforms as transforms
11
 
 
 
12
  from huggingface_hub import hf_hub_download
13
  hf_hub_download(repo_id="Alesteba/deep_model_03", filename="unet.pth")
14
 
@@ -30,6 +34,8 @@ def transform_image(image):
30
 
31
  return my_transforms(image_aux).unsqueeze(0).to(device)
32
 
 
 
33
  def predict(img):
34
  img = PIL.Image.fromarray(img, "RGB")
35
  image = transforms.Resize((480,640))(img)
@@ -48,21 +54,10 @@ def predict(img):
48
  mask=np.reshape(mask,(480,640))
49
  return Image.fromarray(mask.astype('uint8'))
50
 
51
- # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
52
- # repo_id = "Alesteba/deep_model_03"
53
-
54
- # learner = from_pretrained_fastai(repo_id)
55
- # labels = learner.dls.vocab
56
-
57
-
58
-
59
- # # Definimos una funci贸n que se encarga de llevar a cabo las predicciones
60
- # def predict(img):
61
- # #img = PILImage.create(img)
62
- # pred,pred_idx,probs = learner.predict(img)
63
- # return {labels[i]: float(probs[i]) for i in range(len(labels))}
64
-
65
- # Creamos la interfaz y la lanzamos.
66
-
67
- gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=[gr.outputs.Image(type="pil", label="Predicci贸n")], examples=['color_154.jpg','color_155.jpg']).launch(share=False)
68
 
 
1
+
2
  import gradio as gr
3
+
4
  from fastai.basics import *
5
  from fastai.vision import models
6
  from fastai.vision.all import *
7
  from fastai.metrics import *
8
  from fastai.data.all import *
9
  from fastai.callback import *
10
+
11
  import PIL
12
  import torchvision.transforms as transforms
13
 
14
+ # direct download
15
+
16
  from huggingface_hub import hf_hub_download
17
  hf_hub_download(repo_id="Alesteba/deep_model_03", filename="unet.pth")
18
 
 
34
 
35
  return my_transforms(image_aux).unsqueeze(0).to(device)
36
 
37
+ # Definimos una funci贸n que se encarga de llevar a cabo las predicciones
38
+
39
  def predict(img):
40
  img = PIL.Image.fromarray(img, "RGB")
41
  image = transforms.Resize((480,640))(img)
 
54
  mask=np.reshape(mask,(480,640))
55
  return Image.fromarray(mask.astype('uint8'))
56
 
57
+ gr.Interface(
58
+ fn=predict,
59
+ inputs=gr.inputs.Image(shape=(128, 128)),
60
+ outputs=[gr.outputs.Image(type="pil", label="Prediction")],
61
+ examples=['color_154.jpg','color_155.jpg']
62
+ ).launch(share=False)
 
 
 
 
 
 
 
 
 
 
 
63