Spaces:
Sleeping
Sleeping
File size: 1,437 Bytes
ed86caa 53c16fa ed86caa 53c16fa ed86caa d560675 a6ef4e5 ed86caa a6ef4e5 3432ce2 ed86caa 53c16fa d560675 ed86caa 53c16fa ed86caa 06ba366 ed86caa fe8e91b ed86caa 53c16fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import gradio as gr
def plot_forecast(final_year, companies, noise, show_legend, point_style):
start_year = 2020
x = np.arange(start_year, final_year + 1)
year_count = x.shape[0]
plt_format = ({"cross": "X", "line": "-", "circle": "o--"})[point_style]
fig = plt.figure()
ax = fig.add_subplot(111)
for i, company in enumerate(["Google", "Microsoft", "Netflix", "Apple", "Amazon", "Facebook"]):
if company in companies:
series = np.arange(0, year_count, dtype=float)
series = series**2 * (i + 1)
series += np.random.rand(year_count) * noise
ax.plot(x, series, plt_format, label=company)
if show_legend:
plt.legend()
ax.set_xlabel("Year")
ax.set_ylabel("Revenue")
ax.set_title("Pricescope Forecast")
return fig
demo = gr.Interface(
plot_forecast,
[
gr.Radio([2025, 2030, 2035, 2040], label="Project to:"),
gr.CheckboxGroup(["Google", "Microsoft", "Netflix","Apple", "Amazon", "Facebook"], label="Company Selection"),
gr.Slider(1, 100, label="Noise Level"),
gr.Checkbox(label="Show Legend"),
gr.Dropdown(["cross", "line", "circle"], label="Style"),
],
gr.Plot(label="forecast"),
title="PRICESCOPE: THE FUTURE OF THE STOCKS"
)
if __name__ == "__main__":
demo.launch() |