Spaces:
Running
on
Zero
Running
on
Zero
update
Browse files- app.py +86 -60
- requirements.txt +4 -3
app.py
CHANGED
@@ -1,71 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
8 |
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
#input_ids = tokenizer(text, return_tensors="pt", padding=True)
|
13 |
|
|
|
14 |
|
|
|
|
|
|
|
15 |
|
16 |
-
messages = []
|
17 |
-
use_system_prompt = True
|
18 |
-
DEFAULT_SYSTEM_PROMPT = "you are helpfull assistant."
|
19 |
-
if use_system_prompt:
|
20 |
-
messages = [
|
21 |
-
{"role": "system", "content": DEFAULT_SYSTEM_PROMPT}
|
22 |
-
]
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
# Generate text, passing the attention mask
|
42 |
-
generated_ids = model.generate(input_ids=input_datas.input_ids, attention_mask=input_datas.attention_mask,max_length=10000)
|
43 |
-
#generated_ids = model.generate(input_ids=input_ids, max_length=100)
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
5 |
+
import gradio as gr
|
6 |
|
|
|
7 |
|
8 |
+
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
9 |
+
if not huggingface_token:
|
10 |
+
pass
|
11 |
+
print("no HUGGINGFACE_TOKEN if you need set secret ")
|
12 |
+
#raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
|
13 |
|
14 |
+
model_id = "Qwen/Qwen1.5-0.5B-Chat"
|
15 |
|
16 |
+
device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
dtype = torch.bfloat16
|
|
|
18 |
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
|
20 |
|
21 |
+
print(model_id,device,dtype)
|
22 |
+
histories = []
|
23 |
+
#model = None
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
def call_generate_text(prompt, system_message="You are a helpful assistant."):
|
27 |
+
if prompt =="":
|
28 |
+
print("empty prompt return")
|
29 |
+
return ""
|
30 |
|
31 |
+
global histories
|
32 |
+
#global model
|
33 |
+
#if model != None:# and model.is_cuda:
|
34 |
+
# print("Model is alive")
|
35 |
+
#else:
|
36 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
37 |
+
# model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
|
38 |
+
#)
|
39 |
+
|
40 |
+
messages = [
|
41 |
+
{"role": "system", "content": system_message},
|
42 |
+
]
|
43 |
|
44 |
+
messages += histories
|
45 |
+
|
46 |
+
user_message = {"role": "user", "content": prompt}
|
47 |
+
|
48 |
+
messages += [user_message]
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
try:
|
51 |
+
text = generate_text(messages)
|
52 |
+
histories += [user_message,{"role": "assistant", "content": text}]
|
53 |
+
#model.to("cpu")
|
54 |
+
return text
|
55 |
+
except RuntimeError as e:
|
56 |
+
print(f"An unexpected error occurred: {e}")
|
57 |
+
#model = None
|
58 |
+
|
59 |
+
return ""
|
60 |
+
|
61 |
+
iface = gr.Interface(
|
62 |
+
fn=call_generate_text,
|
63 |
+
inputs=[
|
64 |
+
gr.Textbox(lines=3, label="Input Prompt"),
|
65 |
+
gr.Textbox(lines=2, label="System Message", value="あなたは親切なアシスタントで常に日本語で返答します。"),
|
66 |
+
],
|
67 |
+
outputs=gr.Textbox(label="Generated Text"),
|
68 |
+
title=f"{model_id}",
|
69 |
+
description=f"{model_id} CPU",
|
70 |
+
)
|
71 |
+
print("Initialized")
|
72 |
+
|
73 |
+
@spaces.GPU(duration=120)
|
74 |
+
def generate_text(messages):
|
75 |
+
|
76 |
+
model = AutoModelForCausalLM.from_pretrained(
|
77 |
+
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
|
78 |
+
)
|
79 |
+
|
80 |
+
|
81 |
+
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device) #pipeline has not to(device)
|
82 |
+
result = text_generator(messages, max_new_tokens=256, do_sample=True, temperature=0.7)
|
83 |
+
|
84 |
+
generated_output = result[0]["generated_text"]
|
85 |
+
if isinstance(generated_output, list):
|
86 |
+
for message in reversed(generated_output):
|
87 |
+
if message.get("role") == "assistant":
|
88 |
+
content= message.get("content", "No content found.")
|
89 |
+
return content
|
90 |
+
|
91 |
+
return "No assistant response found."
|
92 |
+
else:
|
93 |
+
return "Unexpected output format."
|
94 |
+
|
95 |
+
if __name__ == "__main__":
|
96 |
+
print("Main")
|
97 |
+
iface.launch()
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
|
2 |
-
transformers
|
3 |
torch
|
|
|
4 |
accelerate
|
5 |
-
|
|
|
|
1 |
+
numpy
|
|
|
2 |
torch
|
3 |
+
spaces
|
4 |
accelerate
|
5 |
+
transformers
|
6 |
+
bitsandbytes
|