|
|
|
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
class VQDecoderV3(nn.Module):
|
|
def __init__(self, args):
|
|
super(VQDecoderV3, self).__init__()
|
|
n_up = args.vae_layer
|
|
channels = []
|
|
for i in range(n_up - 1):
|
|
channels.append(args.vae_length)
|
|
channels.append(args.vae_length)
|
|
channels.append(args.vae_test_dim)
|
|
input_size = args.vae_length
|
|
n_resblk = 2
|
|
assert len(channels) == n_up + 1
|
|
if input_size == channels[0]:
|
|
layers = []
|
|
else:
|
|
layers = [nn.Conv1d(input_size, channels[0], kernel_size=3, stride=1, padding=1)]
|
|
|
|
for i in range(n_resblk):
|
|
layers += [ResBlock(channels[0])]
|
|
|
|
for i in range(n_up):
|
|
layers += [
|
|
nn.Upsample(scale_factor=2, mode="nearest"),
|
|
nn.Conv1d(channels[i], channels[i + 1], kernel_size=3, stride=1, padding=1),
|
|
nn.LeakyReLU(0.2, inplace=True),
|
|
]
|
|
layers += [nn.Conv1d(channels[-1], channels[-1], kernel_size=3, stride=1, padding=1)]
|
|
self.main = nn.Sequential(*layers)
|
|
|
|
|
|
def forward(self, inputs):
|
|
inputs = inputs.permute(0, 2, 1)
|
|
outputs = self.main(inputs).permute(0, 2, 1)
|
|
return outputs
|
|
|
|
|
|
class ResBlock(nn.Module):
|
|
def __init__(self, channel):
|
|
super(ResBlock, self).__init__()
|
|
self.model = nn.Sequential(
|
|
nn.Conv1d(channel, channel, kernel_size=3, stride=1, padding=1),
|
|
nn.LeakyReLU(0.2, inplace=True),
|
|
nn.Conv1d(channel, channel, kernel_size=3, stride=1, padding=1),
|
|
)
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
out = self.model(x)
|
|
out += residual
|
|
return out
|
|
|