import streamlit as st from langchain.chains import LLMChain from langchain_core.prompts import PromptTemplate from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline,BitsAndBytesConfig import os from langchain_community.llms import HuggingFaceEndpoint aa='' HF_TOKEN = os.environ["HF_TOKEN"] # quants = BitsAndBytesConfig(load_in_4bit=True) template = ''' You are an expert Blog generator , Given the Topic , the intended audience and the maximum number of words , Write a blog on the given topic Topic : {topic} Intended Audince : {role} Number of Words : {words} Strictly return the output in a markdown format. Return only the blog and do not provide any other information.''' prompt = PromptTemplate(template = template,input_variables = ['topic','role','words']) def main(): st.title(" :fire: Professional Blog Generator :fire:") st.markdown( """ """, unsafe_allow_html=True ) st.sidebar.header("Input Parameters") role = st.sidebar.text_input("Who is this intednded for ?", "Data Scientist") topic = st.sidebar.text_input("On what Topic should the blog be on ?", "Machine Learning") word_count = st.sidebar.slider("Number of Words", min_value=50, max_value=1000, value=200, step=50) if st.sidebar.button("Generate Blog"): repo_id = "google/gemma-1.1-7b-it" llm = HuggingFaceEndpoint( repo_id=repo_id, max_length=128, temperature=0.5, huggingfacehub_api_token=HF_TOKEN ) llm_chain = LLMChain(prompt=prompt, llm=llm) # print(llm_chain.run(question)) aa = llm_chain.run({"topic": topic,"words":word_count,"role":role}) st.write(aa) # st.write(aa) # st.write("Will Come here") if __name__ == "__main__": main()