Spaces:
Running
Running
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline | |
# from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline,BitsAndBytesConfig | |
# import accelerate | |
# import bitsandbytes | |
from langchain_core.prompts import PromptTemplate | |
# model_id = "mistralai/Mistral-7B-Instruct-v0.2" | |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline | |
hf = HuggingFacePipeline.from_model_id( | |
model_id="facebook/bart-large-cnn", | |
task="text-generation", | |
pipeline_kwargs={"max_new_tokens": 10000} | |
) | |
# tokenizer = AutoTokenizer.from_pretrained(model_id,quantization_config=quants) | |
# model = AutoModelForCausalLM.from_pretrained(model_id,quantization_config=quants) | |
# pipe = pipeline("text-generation", model=model, tokenizer=tokenizer,max_new_tokens=1000) | |
# hf = HuggingFacePipeline(pipeline=pipe) | |
def generate_blog(role , words , topic): | |
template = ''' You are an expert Blog generator , Given the Topic , the intended audience and the maximum number of words , | |
Write a blog on the given topic | |
Topic : {topic} | |
Intended Audince : {role} | |
Number of Words : {words} | |
Strictly return the output in a markdown format''' | |
prompt = PromptTemplate.from_template(template) | |
chain = prompt | hf | |
return chain.invoke({"topic": topic,"words":words,"role":role}) |