File size: 1,168 Bytes
20f9f0c
 
6817ac7
 
20f9f0c
 
a6fa6b2
20f9f0c
3b48617
 
776ea7e
20f9f0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline,BitsAndBytesConfig
# import accelerate
# import bitsandbytes
from langchain_core.prompts import PromptTemplate

quants = BitsAndBytesConfig(load_in_4bit=True)
model_id = "mistralai/Mistral-7B-Instruct-v0.2"
tokenizer = AutoTokenizer.from_pretrained(model_id,quantization_config=quants)
model = AutoModelForCausalLM.from_pretrained(model_id,quantization_config=quants)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer,max_new_tokens=1000)
hf = HuggingFacePipeline(pipeline=pipe)

def generate_blog(role , words , topic):
    template = ''' You are an expert Blog generator , Given the Topic , the intended audience and the maximum number of words , 
    Write a blog on the given topic 
    
    Topic : {topic}
    Intended Audince : {role}
    Number of Words : {words}
    
    Strictly return the output in a markdown format'''

    
    prompt = PromptTemplate.from_template(template)
    
    chain = prompt | hf
    
    
    
    return chain.invoke({"topic": topic,"words":words,"role":role})