import streamlit as st import pandas as pd from utils import extract_from_url, get_model, calculate_memory import plotly.express as px import numpy as np st.set_page_config(page_title='Can you run it? LLM version', layout="wide", initial_sidebar_state="expanded") st.title("Can you run it? LLM version") percentage_width_main = 80 st.markdown( f""" """, unsafe_allow_html=True, ) @st.cache_resource def get_gpu_specs(): return pd.read_csv("data/gpu_specs.csv") def show_gpu_info(info, trainable_params=0): for var in ['Inference', 'Full Training Adam', 'LoRa Fine-tuning']: _info = info.loc[var] if _info['Number of GPUs'] >= 3: func = st.error icon = "⛔" elif _info['Number of GPUs'] == 2: func = st.warning icon = "⚠️" else: func = st.success icon = "✅" msg = f"You require **{_info['Number of GPUs']}** GPUs for **{var}**" if var == 'LoRa Fine-tuning': msg += f" ({trainable_params}%)" func(msg, icon=icon) def get_name(index): row = gpu_specs.iloc[index] return f"{row['Product Name']} ({row['RAM (GB)']} GB, {row['Year']})" def create_plot(memory_table, y, title, container): fig = px.bar(memory_table, x=memory_table.index, y=y, color_continuous_scale="RdBu_r") fig.update_layout(yaxis_title="Number of GPUs", title=dict(text=title, font=dict(size=25))) fig.update_coloraxes(showscale=False) container.plotly_chart(fig, use_container_width=True) gpu_specs = get_gpu_specs() access_token = st.sidebar.text_input("Access token") model_name = st.sidebar.text_input("Model name", value="mistralai/Mistral-7B-v0.1") if not model_name: st.info("Please enter a model name") st.stop() model_name = extract_from_url(model_name) if model_name not in st.session_state: model = get_model(model_name, library="transformers", access_token=access_token) st.session_state[model_name] = (model, calculate_memory(model, ["float32", "float16/bfloat16", "int8", "int4"])) gpu_vendor = st.sidebar.selectbox("GPU Vendor", ["NVIDIA", "AMD", "Intel"]) # year = st.sidebar.selectbox("Filter by Release Year", list(range(2014, 2024))[::-1], index=None) gpu_info = gpu_specs[gpu_specs['Vendor'] == gpu_vendor].sort_values('Product Name') # if year: # gpu_info = gpu_info[gpu_info['Year'] == year] min_ram = gpu_info['RAM (GB)'].min() max_ram = gpu_info['RAM (GB)'].max() ram = st.sidebar.slider("Filter by RAM (GB)", min_ram, max_ram, (10.0, 40.0), step=0.5) gpu_info = gpu_info[gpu_info["RAM (GB)"].between(ram[0], ram[1])] gpu = st.sidebar.selectbox("GPU", gpu_info['Product Name'].index.tolist(), format_func=lambda x : gpu_specs.iloc[x]['Product Name']) gpu_spec = gpu_specs.iloc[gpu] gpu_spec.name = 'INFO' lora_pct = st.sidebar.slider("LoRa % trainable parameters", 0.1, 100.0, 2.0, step=0.1) st.sidebar.dataframe(gpu_spec.T) memory_table = pd.DataFrame(st.session_state[model_name][1]).set_index('dtype') memory_table['LoRA Fine-Tunning (GB)'] = (memory_table["Total Size (GB)"] + (memory_table["Parameters (Billion)"]* lora_pct/100 * (16/8)*4)) * 1.2 _, col, _ = st.columns([1,3,1]) with col.expander("Information", expanded=True): st.markdown("""- GPU information comes from [TechPowerUp GPU Specs](https://www.techpowerup.com/gpu-specs/) - Mainly based on [Model Memory Calculator by hf-accelerate](https://huggingface.co/spaces/hf-accelerate/model-memory-usage) using `transformers` library - Inference is calculated following [EleutherAI Transformer Math 101](https://blog.eleuther.ai/transformer-math/), where is estimated as """) st.latex(r"""\text{Memory}_\text{Inference} \approx \text{Model Size} \times 1.2""") st.markdown("""- For LoRa Fine-tunning, I'm asuming a **16-bit** dtype of trainable parameters. The formula (in terms of GB) is""") st.latex(r"\text{Memory}_\text{LoRa} \approx \text{Model Size} + \left(\text{ \# trainable Params}_\text{Billions}\times\frac{16}{8} \times 4\right) \times 1.2") st.markdown("- You can understand `int4` as models in `GPTQ-4bit`, `AWQ-4bit` or `Q4_0 GGUF/GGML` formats") _memory_table = memory_table.copy() memory_table = memory_table.round(2).T _memory_table /= gpu_spec['RAM (GB)'] _memory_table = _memory_table.apply(np.ceil).astype(int).drop(columns=['Parameters (Billion)', 'Total Size (GB)']) _memory_table.columns = ['Inference', 'Full Training Adam', 'LoRa Fine-tuning'] _memory_table = _memory_table.stack().reset_index() _memory_table.columns = ['dtype', 'Variable', 'Number of GPUs'] st.write() col1, col2 = st.columns([1,1.3]) with col1: st.write(f"#### [{model_name}](https://huggingface.co/{model_name}) ({memory_table.iloc[3,0]:.1f}B)") dtypes = memory_table.columns.tolist()[::-1] tabs = st.tabs(dtypes) for dtype, tab in zip(dtypes, tabs): with tab: info = _memory_table[_memory_table['dtype'] == dtype].set_index('Variable') show_gpu_info(info, lora_pct) st.write(memory_table.iloc[[0, 1, 2, 4]]) with col2: num_colors= 4 colors = [px.colors.sequential.RdBu[int(i*(len(px.colors.sequential.RdBu)-1)/(num_colors-1))] for i in range(num_colors)] fig = px.bar(_memory_table, x='Variable', y='Number of GPUs', color='dtype', barmode='group', color_discrete_sequence=colors) fig.update_layout(title=dict(text=f"Number of GPUs required for
{get_name(gpu)}", font=dict(size=25)) , xaxis_tickfont_size=14, yaxis_tickfont_size=16, yaxis_dtick='1') st.plotly_chart(fig, use_container_width=True)