Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import os
|
4 |
+
|
5 |
+
app = Flask(__name__)
|
6 |
+
|
7 |
+
# Load model and tokenizer
|
8 |
+
MODEL_NAME = "bigscience/bloomz-1b1" # Replace with your model name
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
11 |
+
|
12 |
+
@app.route("/api/chat", methods=["POST"])
|
13 |
+
def chat():
|
14 |
+
try:
|
15 |
+
# Get user message from the POST request
|
16 |
+
user_message = request.json.get("message", "")
|
17 |
+
|
18 |
+
# Tokenize user input
|
19 |
+
inputs = tokenizer(user_message, return_tensors="pt", truncation=True, max_length=512)
|
20 |
+
|
21 |
+
# Generate response
|
22 |
+
outputs = model.generate(inputs["input_ids"], max_length=150, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
|
23 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
24 |
+
|
25 |
+
# Return the response as JSON
|
26 |
+
return jsonify({"response": response})
|
27 |
+
except Exception as e:
|
28 |
+
return jsonify({"error": str(e)}), 500
|
29 |
+
|
30 |
+
if __name__ == "__main__":
|
31 |
+
# Use the default port for Hugging Face Spaces
|
32 |
+
app.run(host="0.0.0.0", port=int(os.environ.get("PORT", 7860)))
|