Frugal_AI_Agent / tools.py
CindyDelage's picture
Update tools.py
1428a78 verified
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import numpy as np
import os
import torch
import gc
import psutil
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor, pipeline
from utils.evaluation import AudioEvaluationRequest
from utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
import logging
import csv
import torch.nn.utils.prune as prune
from typing import Optional
from pydantic import BaseModel, Field
from smolagents import Tool
# Configurer le logging
logging.basicConfig(level=logging.INFO)
logging.info("Début du fichier python")
load_dotenv()
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/audio"
device = 0 if torch.cuda.is_available() else -1
def preprocess_function(example, feature_extractor):
return feature_extractor(
[x["array"] for x in example["audio"]],
sampling_rate=feature_extractor.sampling_rate, padding="longest", max_length=16000, truncation=True, return_tensors="pt"
)
def apply_pruning(model, amount=0.3):
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
prune.l1_unstructured(module, name="weight", amount=amount)
prune.remove(module, "weight")
return model
class BaseEvaluationRequest(BaseModel):
test_size: float = Field(0.2, ge=0.0, le=1.0, description="Size of the test split (between 0 and 1)")
test_seed: int = Field(42, ge=0, description="Random seed for reproducibility")
class AudioEvaluationRequest(BaseEvaluationRequest):
dataset_name: str = Field("rfcx/frugalai",
description="The name of the dataset on HuggingFace Hub")
class evaluate_consumption_example(Tool):
name = "evaluate_consumption_example"
description = "This is only an example. If a manager wants to know what you are capable of, use it : it will use code carbon to evaluate the CO2 emissions from an example Python code"
inputs = {
"code": {
"type": "string",
"description": "The code to evaluate. Here, it is an example, so just set it to 'None'."
}
}
output_type = "string"
def forward(self, code : str):
request = AudioEvaluationRequest()
logging.info("Chargement des données")
dataset = load_dataset(request.dataset_name, streaming=True, token=os.getenv("HF_TOKEN"))
logging.info("Données chargées")
test_dataset = dataset["test"]
del dataset
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
test_dataset = test_dataset.map(preprocess_function, fn_kwargs={"feature_extractor": feature_extractor}, remove_columns="audio", batched=True, batch_size=32)
gc.collect()
model_name = "CindyDelage/Challenge_HuggingFace_DFG_FrugalAI"
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
# Appliquer la quantification dynamique et le pruning
model.eval()
#model = torch.quantization.quantize_dynamic(model, dtype=torch.qint8)
#model = apply_pruning(model, amount=0.3) # Prune 30% des poids linéaires
classifier = pipeline("audio-classification", model=model, feature_extractor=feature_extractor, device=device)
predictions = []
logging.info("Début des prédictions par batch")
i=0
for data in iter(test_dataset):
print(i)
if (i<=5):
with torch.no_grad():
result = classifier(np.asarray(data["input_values"]), batch_size=64)
predicted_label = result[0]['label']
label = 1 if predicted_label == 'environment' else 0
predictions.append(label)
# Nettoyer la mémoire après chaque itération
del result
del label
torch.cuda.empty_cache()
gc.collect()
i=i+1
if(i>5):
break
logging.info("Fin des prédictions")
del classifier
del feature_extractor
gc.collect()
# Stop tracking emissions
emissions_data = tracker.stop_task()
return emissions_data
class evaluate_consumption(Tool):
name = "evaluate_consumption"
description = "If the manager gave you its Python code, this function uses code carbon to evaluate the CO2 emissions from the given Python code"
inputs = {
"code": {
"type": "string",
"description": "The code to evaluate."
}
}
output_type = "string"
def forward(self, code : str):
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
exec(code)
# Stop tracking emissions
emissions_data = tracker.stop_task()
return emissions_data