File size: 1,654 Bytes
c9c557d
 
95bea38
0aba987
b09d01b
63362b3
 
 
 
 
 
c9c557d
b09d01b
 
 
 
 
 
 
c79c66f
b09d01b
 
 
 
0145ad5
b09d01b
95bea38
 
9a929f5
c9c557d
 
c79c66f
b09d01b
 
 
 
 
9a929f5
95bea38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from smolagents import Tool

class FrugalAI_methods(Tool):
    name = "FrugalAI_methods"
    description = "Retrieves methods for model frugalization. It will return ideas to frugalize a code, please use it."
    inputs = {
        "method": {
            "type": "string",
            "description": "Always set it to 'Frugal' or it will raise an error."
        }
    }
    output_type = "string"
    
    def forward(self, method):
        ideas=[]
        ideas.append(pruning())
        ideas.append(quantization())
        return ideas
        
def pruning():
    """
    Optimizes models by removing unnecessary components, such as certain weights in a neural network. 
    This function demonstrates how to apply pruning.
    """
    code = "model = apply_pruning(model, amount=0.3)"
    return (
            f"To apply pruning to a model, use the following code snippet: {code}. "
            f"You should adapt it to your actual implementation. In particular, the 'amount' parameter "
            f"can be increased or decreased depending on the initial number of weights and the complexity of your use case (minimu value: 0, maximum value: 1). You should give these information to the manager, you can not prune the model yourself."
        )

def quantization():
    """
    Converts high-precision weights into lower-precision one to reduce cost. 
    """
    code = "model = torch.quantization.quantize_dynamic(model, dtype=torch.qint8)"
    return (
            f"To apply quantization to a model, use the following code snippet: {code}. You should give these information to the manager, you can not quantize the model yourself."
        )