Spaces:
Sleeping
Sleeping
import cv2 | |
import streamlit as st | |
from face_detection import FaceDetector | |
from mark_detection import MarkDetector | |
from pose_estimation import PoseEstimator | |
from utils import refine | |
def main(): | |
# Streamlit Title and Sidebar for inputs | |
st.title("Distraction Detection App") | |
video_src = st.sidebar.selectbox("Select Video Source", ("Webcam", "Video File")) | |
# If a video file is chosen, provide file uploader | |
if video_src == "Video File": | |
video_file = st.sidebar.file_uploader("Upload a Video File", type=["mp4", "avi", "mov"]) | |
if video_file is not None: | |
video_src = video_file | |
else: | |
st.warning("Please upload a video file.") | |
return | |
else: | |
video_src = 0 # Webcam index | |
# Setup the video capture and detector components | |
cap = cv2.VideoCapture(video_src if video_src == 0 else video_file) | |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
face_detector = FaceDetector("assets/face_detector.onnx") | |
mark_detector = MarkDetector("assets/face_landmarks.onnx") | |
pose_estimator = PoseEstimator(frame_width, frame_height) | |
# Streamlit placeholders for images | |
frame_placeholder = st.empty() | |
while cap.isOpened(): | |
# Capture a frame | |
frame_got, frame = cap.read() | |
if not frame_got: | |
break | |
# Flip the frame if from webcam | |
if video_src == 0: | |
frame = cv2.flip(frame, 2) | |
# Face detection and pose estimation | |
faces, _ = face_detector.detect(frame, 0.7) | |
if len(faces) > 0: | |
face = refine(faces, frame_width, frame_height, 0.15)[0] | |
x1, y1, x2, y2 = face[:4].astype(int) | |
patch = frame[y1:y2, x1:x2] | |
marks = mark_detector.detect([patch])[0].reshape([68, 2]) | |
marks *= (x2 - x1) | |
marks[:, 0] += x1 | |
marks[:, 1] += y1 | |
distraction_status, pose_vectors = pose_estimator.detect_distraction(marks) | |
status_text = "Distracted" if distraction_status else "Focused" | |
# Overlay status text | |
cv2.putText(frame, f"Status: {status_text}", (10, 50), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, | |
(0, 255, 0) if not distraction_status else (0, 0, 255)) | |
# Display the frame in Streamlit | |
frame_placeholder.image(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), channels="RGB") | |
cap.release() | |
if __name__ == "__main__": | |
main() | |