Spaces:
Runtime error
Runtime error
File size: 21,109 Bytes
c9bf657 30cca2c c9bf657 94ad09c c9bf657 94ad09c 30cca2c c9bf657 0bb07b7 c9bf657 0bb07b7 c9bf657 0bb07b7 c9bf657 0bb07b7 c9bf657 0bb07b7 c9bf657 ad6ac6f c9bf657 0bb07b7 c9bf657 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
import gradio as gr
import os
import lancedb
from sentence_transformers import SentenceTransformer
from dotenv import load_dotenv
from typing import List
from PIL import Image
import base64
import io
import time
from collections import namedtuple
import pandas as pd
import concurrent.futures
from varag.rag import SimpleRAG, VisionRAG, ColpaliRAG, HybridColpaliRAG
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from varag.chunking import FixedTokenChunker
from varag.utils import get_model_colpali
import argparse
import spaces
import torch
from docling.document_converter import DocumentConverter
load_dotenv()
# Initialize shared database
shared_db = lancedb.connect("~/rag_demo_db")
# Initialize embedding models
# text_embedding_model = SentenceTransformer("all-MiniLM-L6-v2", trust_remote_code=True)
text_embedding_model = SentenceTransformer(
"BAAI/bge-base-en", trust_remote_code=True
)
# text_embedding_model = SentenceTransformer("BAAI/bge-large-en-v1.5", trust_remote_code=True)
# text_embedding_model = SentenceTransformer("BAAI/bge-small-en-v1.5", trust_remote_code=True)
image_embedding_model = SentenceTransformer(
"jinaai/jina-clip-v1", trust_remote_code=True
)
colpali_model, colpali_processor = get_model_colpali("vidore/colpali-v1.2")
converter = DocumentConverter()
# Initialize RAG instances
simple_rag = SimpleRAG(
text_embedding_model=text_embedding_model, db=shared_db, table_name="simpleDemo"
)
vision_rag = VisionRAG(
image_embedding_model=image_embedding_model, db=shared_db, table_name="visionDemo"
)
colpali_rag = ColpaliRAG(
colpali_model=colpali_model,
colpali_processor=colpali_processor,
db=shared_db,
table_name="colpaliDemo",
)
hybrid_rag = HybridColpaliRAG(
colpali_model=colpali_model,
colpali_processor=colpali_processor,
image_embedding_model=image_embedding_model,
db=shared_db,
table_name="hybridDemo",
)
IngestResult = namedtuple("IngestResult", ["status_text", "progress_table"])
# @spaces.GPU(duration=120)
# def ingest_data(pdf_files, use_ocr, chunk_size, progress=gr.Progress()):
# file_paths = [pdf_file.name for pdf_file in pdf_files]
# total_start_time = time.time()
# progress_data = []
# # SimpleRAG
# yield IngestResult(
# status_text="Starting SimpleRAG ingestion...\n",
# progress_table=pd.DataFrame(progress_data),
# )
# start_time = time.time()
# simple_rag.index(
# file_paths,
# recursive=False,
# chunking_strategy=FixedTokenChunker(chunk_size=chunk_size),
# metadata={"source": "gradio_upload"},
# overwrite=True,
# verbose=True,
# ocr=use_ocr,
# )
# simple_time = time.time() - start_time
# progress_data.append(
# {"Technique": "SimpleRAG", "Time Taken (s)": f"{simple_time:.2f}"}
# )
# yield IngestResult(
# status_text=f"SimpleRAG ingestion complete. Time taken: {simple_time:.2f} seconds\n\n",
# progress_table=pd.DataFrame(progress_data),
# )
# # progress(0.25, desc="SimpleRAG complete")
# # VisionRAG
# yield IngestResult(
# status_text="Starting VisionRAG ingestion...\n",
# progress_table=pd.DataFrame(progress_data),
# )
# start_time = time.time()
# vision_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
# vision_time = time.time() - start_time
# progress_data.append(
# {"Technique": "VisionRAG", "Time Taken (s)": f"{vision_time:.2f}"}
# )
# yield IngestResult(
# status_text=f"VisionRAG ingestion complete. Time taken: {vision_time:.2f} seconds\n\n",
# progress_table=pd.DataFrame(progress_data),
# )
# # progress(0.5, desc="VisionRAG complete")
# # ColpaliRAG
# yield IngestResult(
# status_text="Starting ColpaliRAG ingestion...\n",
# progress_table=pd.DataFrame(progress_data),
# )
# start_time = time.time()
# colpali_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
# colpali_time = time.time() - start_time
# progress_data.append(
# {"Technique": "ColpaliRAG", "Time Taken (s)": f"{colpali_time:.2f}"}
# )
# yield IngestResult(
# status_text=f"ColpaliRAG ingestion complete. Time taken: {colpali_time:.2f} seconds\n\n",
# progress_table=pd.DataFrame(progress_data),
# )
# # progress(0.75, desc="ColpaliRAG complete")
# # HybridColpaliRAG
# yield IngestResult(
# status_text="Starting HybridColpaliRAG ingestion...\n",
# progress_table=pd.DataFrame(progress_data),
# )
# start_time = time.time()
# hybrid_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
# hybrid_time = time.time() - start_time
# progress_data.append(
# {"Technique": "HybridColpaliRAG", "Time Taken (s)": f"{hybrid_time:.2f}"}
# )
# yield IngestResult(
# status_text=f"HybridColpaliRAG ingestion complete. Time taken: {hybrid_time:.2f} seconds\n\n",
# progress_table=pd.DataFrame(progress_data),
# )
# # progress(1.0, desc="HybridColpaliRAG complete")
# total_time = time.time() - total_start_time
# progress_data.append({"Technique": "Total", "Time Taken (s)": f"{total_time:.2f}"})
# yield IngestResult(
# status_text=f"Total ingestion time: {total_time:.2f} seconds",
# progress_table=pd.DataFrame(progress_data),
# )
def ingest_data(pdf_files, use_ocr, chunk_size, progress=gr.Progress()):
file_paths = [pdf_file.name for pdf_file in pdf_files]
total_start_time = time.time()
progress_data = []
@spaces.GPU(duration=120)
def ingest_simple_rag():
yield IngestResult(
status_text="Starting SimpleRAG ingestion...\n",
progress_table=pd.DataFrame(progress_data),
)
start_time = time.time()
simple_rag.index(
file_paths,
recursive=False,
chunking_strategy=FixedTokenChunker(chunk_size=chunk_size),
metadata={"source": "gradio_upload"},
overwrite=True,
verbose=True,
ocr=use_ocr,
)
simple_time = time.time() - start_time
progress_data.append(
{"Technique": "SimpleRAG", "Time Taken (s)": f"{simple_time:.2f}"}
)
yield IngestResult(
status_text=f"SimpleRAG ingestion complete. Time taken: {simple_time:.2f} seconds\n\n",
progress_table=pd.DataFrame(progress_data),
)
@spaces.GPU(duration=120)
def ingest_vision_rag():
yield IngestResult(
status_text="Starting VisionRAG ingestion...\n",
progress_table=pd.DataFrame(progress_data),
)
start_time = time.time()
vision_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
vision_time = time.time() - start_time
progress_data.append(
{"Technique": "VisionRAG", "Time Taken (s)": f"{vision_time:.2f}"}
)
yield IngestResult(
status_text=f"VisionRAG ingestion complete. Time taken: {vision_time:.2f} seconds\n\n",
progress_table=pd.DataFrame(progress_data),
)
@spaces.GPU(duration=120)
def ingest_colpali_rag():
yield IngestResult(
status_text="Starting ColpaliRAG ingestion...\n",
progress_table=pd.DataFrame(progress_data),
)
start_time = time.time()
colpali_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
colpali_time = time.time() - start_time
progress_data.append(
{"Technique": "ColpaliRAG", "Time Taken (s)": f"{colpali_time:.2f}"}
)
yield IngestResult(
status_text=f"ColpaliRAG ingestion complete. Time taken: {colpali_time:.2f} seconds\n\n",
progress_table=pd.DataFrame(progress_data),
)
@spaces.GPU(duration=120)
def ingest_hybrid_rag():
yield IngestResult(
status_text="Starting HybridColpaliRAG ingestion...\n",
progress_table=pd.DataFrame(progress_data),
)
start_time = time.time()
hybrid_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
hybrid_time = time.time() - start_time
progress_data.append(
{"Technique": "HybridColpaliRAG", "Time Taken (s)": f"{hybrid_time:.2f}"}
)
yield IngestResult(
status_text=f"HybridColpaliRAG ingestion complete. Time taken: {hybrid_time:.2f} seconds\n\n",
progress_table=pd.DataFrame(progress_data),
)
# Call each ingestion function
yield from ingest_simple_rag()
yield from ingest_vision_rag()
yield from ingest_colpali_rag()
yield from ingest_hybrid_rag()
total_time = time.time() - total_start_time
progress_data.append({"Technique": "Total", "Time Taken (s)": f"{total_time:.2f}"})
yield IngestResult(
status_text=f"Total ingestion time: {total_time:.2f} seconds",
progress_table=pd.DataFrame(progress_data),
)
@spaces.GPU(duration=120)
def retrieve_data(query, top_k, sequential=False):
results = {}
timings = {}
def retrieve_simple():
start_time = time.time()
simple_results = simple_rag.search(query, k=top_k)
print(simple_results)
simple_context = []
for i, r in enumerate(simple_results, 1):
context_piece = f"Result {i}:\n"
context_piece += f"Source: {r.get('document_name', 'Unknown')}\n"
context_piece += f"Chunk Index: {r.get('chunk_index', 'Unknown')}\n"
context_piece += f"Content:\n{r['text']}\n"
context_piece += "-" * 40 + "\n" # Separator
simple_context.append(context_piece)
simple_context = "\n".join(simple_context)
end_time = time.time()
return "SimpleRAG", simple_context, end_time - start_time
def retrieve_vision():
start_time = time.time()
vision_results = vision_rag.search(query, k=top_k)
vision_images = [r["image"] for r in vision_results]
end_time = time.time()
return "VisionRAG", vision_images, end_time - start_time
def retrieve_colpali():
start_time = time.time()
colpali_results = colpali_rag.search(query, k=top_k)
colpali_images = [r["image"] for r in colpali_results]
end_time = time.time()
return "ColpaliRAG", colpali_images, end_time - start_time
def retrieve_hybrid():
start_time = time.time()
hybrid_results = hybrid_rag.search(query, k=top_k, use_image_search=True)
hybrid_images = [r["image"] for r in hybrid_results]
end_time = time.time()
return "HybridColpaliRAG", hybrid_images, end_time - start_time
retrieval_functions = [
retrieve_simple,
retrieve_vision,
retrieve_colpali,
retrieve_hybrid,
]
if sequential:
for func in retrieval_functions:
rag_type, content, timing = func()
results[rag_type] = content
timings[rag_type] = timing
else:
with concurrent.futures.ThreadPoolExecutor() as executor:
future_results = [executor.submit(func) for func in retrieval_functions]
for future in concurrent.futures.as_completed(future_results):
rag_type, content, timing = future.result()
results[rag_type] = content
timings[rag_type] = timing
return results, timings
# @spaces.GPU
# def query_data(query, retrieved_results):
# results = {}
# # SimpleRAG
# simple_context = retrieved_results["SimpleRAG"]
# simple_response = llm.query(
# context=simple_context,
# system_prompt="Given the below information answer the questions",
# query=query,
# )
# results["SimpleRAG"] = {"response": simple_response, "context": simple_context}
# # VisionRAG
# vision_images = retrieved_results["VisionRAG"]
# vision_context = f"Query: {query}\n\nRelevant image information:\n" + "\n".join(
# [f"Image {i+1}" for i in range(len(vision_images))]
# )
# vision_response = vlm.query(vision_context, vision_images, max_tokens=500)
# results["VisionRAG"] = {
# "response": vision_response,
# "context": vision_context,
# "images": vision_images,
# }
# # ColpaliRAG
# colpali_images = retrieved_results["ColpaliRAG"]
# colpali_context = f"Query: {query}\n\nRelevant image information:\n" + "\n".join(
# [f"Image {i+1}" for i in range(len(colpali_images))]
# )
# colpali_response = vlm.query(colpali_context, colpali_images, max_tokens=500)
# results["ColpaliRAG"] = {
# "response": colpali_response,
# "context": colpali_context,
# "images": colpali_images,
# }
# # HybridColpaliRAG
# hybrid_images = retrieved_results["HybridColpaliRAG"]
# hybrid_context = f"Query: {query}\n\nRelevant image information:\n" + "\n".join(
# [f"Image {i+1}" for i in range(len(hybrid_images))]
# )
# hybrid_response = vlm.query(hybrid_context, hybrid_images, max_tokens=500)
# results["HybridColpaliRAG"] = {
# "response": hybrid_response,
# "context": hybrid_context,
# "images": hybrid_images,
# }
# return results
def update_api_key(api_key):
os.environ["OPENAI_API_KEY"] = api_key
return "API key updated successfully."
def change_table(simple_table, vision_table, colpali_table, hybrid_table):
simple_rag.change_table(simple_table)
vision_rag.change_table(vision_table)
colpali_rag.change_table(colpali_table)
hybrid_rag.change_table(hybrid_table)
return "Table names updated successfully."
def gradio_interface():
with gr.Blocks(
theme=gr.themes.Monochrome(radius_size=gr.themes.sizes.radius_none)
) as demo:
gr.Markdown(
"""
# ποΈποΈ Vision RAG Playground
### Explore and Compare Vision-Augmented Retrieval Techniques
Built on [VARAG](https://github.com/adithya-s-k/VARAG) - Vision-Augmented Retrieval and Generation
**[β Star the Repository](https://github.com/adithya-s-k/VARAG)** to support the project!
1. **Simple RAG**: Text-based retrieval with OCR support for scanned documents.
2. **Vision RAG**: Combines text and image retrieval using cross-modal embeddings.
3. **ColPali RAG**: Embeds entire document pages as images for layout-aware retrieval.
4. **Hybrid ColPali RAG**: Two-stage retrieval combining image embeddings and ColPali's token-level matching.
"""
)
with gr.Tab("Ingest Data"):
gr.Markdown(
"""
## β οΈ Important Note on Data Ingestion
This Space has a maximum GPU-enabled time of 120 seconds. It's recommended to try ingesting only 1 or 2 pdfs at a time.
If you want to ingest a larger amount of data, please try it out in a Google Colab notebook:
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adithya-s-k/VARAG/blob/main/docs/demo.ipynb)
"""
)
pdf_input = gr.File(
label="Upload PDF(s)", file_count="multiple", file_types=["pdf"]
)
use_ocr = gr.Checkbox(label="Use OCR (for SimpleRAG)")
chunk_size = gr.Slider(
50, 5000, value=200, step=10, label="Chunk Size (for SimpleRAG)"
)
ingest_button = gr.Button("Ingest PDFs")
ingest_output = gr.Markdown(
label="Ingestion Status :",
)
progress_table = gr.DataFrame(
label="Ingestion Progress", headers=["Technique", "Time Taken (s)"]
)
with gr.Tab("Retrieve and Query Data"):
query_input = gr.Textbox(label="Enter your query")
top_k_slider = gr.Slider(1, 10, value=3, step=1, label="Top K Results")
sequential_checkbox = gr.Checkbox(label="Sequential Retrieval", value=False)
retrieve_button = gr.Button("Retrieve")
query_button = gr.Button("Query")
retrieval_timing = gr.DataFrame(
label="Retrieval Timings", headers=["RAG Type", "Time (s)"]
)
with gr.Row():
with gr.Column():
with gr.Accordion("SimpleRAG", open=True):
simple_content = gr.Textbox(
label="SimpleRAG Content", lines=10, max_lines=10
)
simple_response = gr.Markdown(label="SimpleRAG Response")
with gr.Column():
with gr.Accordion("VisionRAG", open=True):
vision_gallery = gr.Gallery(label="VisionRAG Images")
vision_response = gr.Markdown(label="VisionRAG Response")
with gr.Row():
with gr.Column():
with gr.Accordion("ColpaliRAG", open=True):
colpali_gallery = gr.Gallery(label="ColpaliRAG Images")
colpali_response = gr.Markdown(label="ColpaliRAG Response")
with gr.Column():
with gr.Accordion("HybridColpaliRAG", open=True):
hybrid_gallery = gr.Gallery(label="HybridColpaliRAG Images")
hybrid_response = gr.Markdown(label="HybridColpaliRAG Response")
with gr.Tab("Settings"):
api_key_input = gr.Textbox(label="OpenAI API Key", type="password")
update_api_button = gr.Button("Update API Key")
api_update_status = gr.Textbox(label="API Update Status")
simple_table_input = gr.Textbox(
label="SimpleRAG Table Name", value="simpleDemo"
)
vision_table_input = gr.Textbox(
label="VisionRAG Table Name", value="visionDemo"
)
colpali_table_input = gr.Textbox(
label="ColpaliRAG Table Name", value="colpaliDemo"
)
hybrid_table_input = gr.Textbox(
label="HybridColpaliRAG Table Name", value="hybridDemo"
)
update_table_button = gr.Button("Update Table Names")
table_update_status = gr.Textbox(label="Table Update Status")
retrieved_results = gr.State({})
def update_retrieval_results(query, top_k, sequential):
results, timings = retrieve_data(query, top_k, sequential)
timing_df = pd.DataFrame(
list(timings.items()), columns=["RAG Type", "Time (s)"]
)
return (
results["SimpleRAG"],
results["VisionRAG"],
results["ColpaliRAG"],
results["HybridColpaliRAG"],
timing_df,
results,
)
retrieve_button.click(
update_retrieval_results,
inputs=[query_input, top_k_slider, sequential_checkbox],
outputs=[
simple_content,
vision_gallery,
colpali_gallery,
hybrid_gallery,
retrieval_timing,
retrieved_results,
],
)
# def update_query_results(query, retrieved_results):
# results = query_data(query, retrieved_results)
# return (
# results["SimpleRAG"]["response"],
# results["VisionRAG"]["response"],
# results["ColpaliRAG"]["response"],
# results["HybridColpaliRAG"]["response"],
# )
# query_button.click(
# update_query_results,
# inputs=[query_input, retrieved_results],
# outputs=[
# simple_response,
# vision_response,
# colpali_response,
# hybrid_response,
# ],
# )
ingest_button.click(
ingest_data,
inputs=[pdf_input, use_ocr, chunk_size],
outputs=[ingest_output, progress_table],
)
update_api_button.click(
update_api_key, inputs=[api_key_input], outputs=api_update_status
)
update_table_button.click(
change_table,
inputs=[
simple_table_input,
vision_table_input,
colpali_table_input,
hybrid_table_input,
],
outputs=table_update_status,
)
return demo
# Parse command-line arguments
def parse_args():
parser = argparse.ArgumentParser(description="VisionRAG Gradio App")
parser.add_argument(
"--share", action="store_true", help="Enable Gradio share feature"
)
return parser.parse_args()
# Launch the app
if __name__ == "__main__":
args = parse_args()
app = gradio_interface()
app.launch(share=args.share)
|