File size: 21,109 Bytes
c9bf657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30cca2c
c9bf657
 
 
 
 
 
 
94ad09c
 
 
 
 
 
 
 
 
 
 
c9bf657
94ad09c
 
30cca2c
c9bf657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bb07b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bf657
 
 
 
 
0bb07b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bf657
0bb07b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bf657
0bb07b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bf657
0bb07b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bf657
 
 
 
 
 
 
 
 
ad6ac6f
c9bf657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bb07b7
 
 
 
 
 
 
 
 
 
 
 
c9bf657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import gradio as gr
import os
import lancedb
from sentence_transformers import SentenceTransformer
from dotenv import load_dotenv
from typing import List
from PIL import Image
import base64
import io
import time
from collections import namedtuple
import pandas as pd
import concurrent.futures
from varag.rag import SimpleRAG, VisionRAG, ColpaliRAG, HybridColpaliRAG
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from varag.chunking import FixedTokenChunker
from varag.utils import get_model_colpali
import argparse
import spaces
import torch
from docling.document_converter import DocumentConverter

load_dotenv()

# Initialize shared database
shared_db = lancedb.connect("~/rag_demo_db")




# Initialize embedding models
# text_embedding_model = SentenceTransformer("all-MiniLM-L6-v2", trust_remote_code=True)
text_embedding_model = SentenceTransformer(
    "BAAI/bge-base-en", trust_remote_code=True
)
# text_embedding_model = SentenceTransformer("BAAI/bge-large-en-v1.5", trust_remote_code=True)
# text_embedding_model = SentenceTransformer("BAAI/bge-small-en-v1.5", trust_remote_code=True)
image_embedding_model = SentenceTransformer(
    "jinaai/jina-clip-v1", trust_remote_code=True
)
colpali_model, colpali_processor = get_model_colpali("vidore/colpali-v1.2")

converter = DocumentConverter()

# Initialize RAG instances
simple_rag = SimpleRAG(
    text_embedding_model=text_embedding_model, db=shared_db, table_name="simpleDemo"
)
vision_rag = VisionRAG(
    image_embedding_model=image_embedding_model, db=shared_db, table_name="visionDemo"
)
colpali_rag = ColpaliRAG(
    colpali_model=colpali_model,
    colpali_processor=colpali_processor,
    db=shared_db,
    table_name="colpaliDemo",
)
hybrid_rag = HybridColpaliRAG(
    colpali_model=colpali_model,
    colpali_processor=colpali_processor,
    image_embedding_model=image_embedding_model,
    db=shared_db,
    table_name="hybridDemo",
)


IngestResult = namedtuple("IngestResult", ["status_text", "progress_table"])


# @spaces.GPU(duration=120)
# def ingest_data(pdf_files, use_ocr, chunk_size, progress=gr.Progress()):
#     file_paths = [pdf_file.name for pdf_file in pdf_files]
#     total_start_time = time.time()
#     progress_data = []

#     # SimpleRAG
#     yield IngestResult(
#         status_text="Starting SimpleRAG ingestion...\n",
#         progress_table=pd.DataFrame(progress_data),
#     )
#     start_time = time.time()
#     simple_rag.index(
#         file_paths,
#         recursive=False,
#         chunking_strategy=FixedTokenChunker(chunk_size=chunk_size),
#         metadata={"source": "gradio_upload"},
#         overwrite=True,
#         verbose=True,
#         ocr=use_ocr,
#     )
#     simple_time = time.time() - start_time
#     progress_data.append(
#         {"Technique": "SimpleRAG", "Time Taken (s)": f"{simple_time:.2f}"}
#     )
#     yield IngestResult(
#         status_text=f"SimpleRAG ingestion complete. Time taken: {simple_time:.2f} seconds\n\n",
#         progress_table=pd.DataFrame(progress_data),
#     )
#     # progress(0.25, desc="SimpleRAG complete")

#     # VisionRAG
#     yield IngestResult(
#         status_text="Starting VisionRAG ingestion...\n",
#         progress_table=pd.DataFrame(progress_data),
#     )
#     start_time = time.time()
#     vision_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
#     vision_time = time.time() - start_time
#     progress_data.append(
#         {"Technique": "VisionRAG", "Time Taken (s)": f"{vision_time:.2f}"}
#     )
#     yield IngestResult(
#         status_text=f"VisionRAG ingestion complete. Time taken: {vision_time:.2f} seconds\n\n",
#         progress_table=pd.DataFrame(progress_data),
#     )
#     # progress(0.5, desc="VisionRAG complete")

#     # ColpaliRAG
#     yield IngestResult(
#         status_text="Starting ColpaliRAG ingestion...\n",
#         progress_table=pd.DataFrame(progress_data),
#     )
#     start_time = time.time()
#     colpali_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
#     colpali_time = time.time() - start_time
#     progress_data.append(
#         {"Technique": "ColpaliRAG", "Time Taken (s)": f"{colpali_time:.2f}"}
#     )
#     yield IngestResult(
#         status_text=f"ColpaliRAG ingestion complete. Time taken: {colpali_time:.2f} seconds\n\n",
#         progress_table=pd.DataFrame(progress_data),
#     )
#     # progress(0.75, desc="ColpaliRAG complete")

#     # HybridColpaliRAG
#     yield IngestResult(
#         status_text="Starting HybridColpaliRAG ingestion...\n",
#         progress_table=pd.DataFrame(progress_data),
#     )
#     start_time = time.time()
#     hybrid_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
#     hybrid_time = time.time() - start_time
#     progress_data.append(
#         {"Technique": "HybridColpaliRAG", "Time Taken (s)": f"{hybrid_time:.2f}"}
#     )
#     yield IngestResult(
#         status_text=f"HybridColpaliRAG ingestion complete. Time taken: {hybrid_time:.2f} seconds\n\n",
#         progress_table=pd.DataFrame(progress_data),
#     )
#     # progress(1.0, desc="HybridColpaliRAG complete")

#     total_time = time.time() - total_start_time
#     progress_data.append({"Technique": "Total", "Time Taken (s)": f"{total_time:.2f}"})
#     yield IngestResult(
#         status_text=f"Total ingestion time: {total_time:.2f} seconds",
#         progress_table=pd.DataFrame(progress_data),
#     )


def ingest_data(pdf_files, use_ocr, chunk_size, progress=gr.Progress()):
    file_paths = [pdf_file.name for pdf_file in pdf_files]
    total_start_time = time.time()
    progress_data = []

    @spaces.GPU(duration=120)
    def ingest_simple_rag():
        yield IngestResult(
            status_text="Starting SimpleRAG ingestion...\n",
            progress_table=pd.DataFrame(progress_data),
        )
        start_time = time.time()
        simple_rag.index(
            file_paths,
            recursive=False,
            chunking_strategy=FixedTokenChunker(chunk_size=chunk_size),
            metadata={"source": "gradio_upload"},
            overwrite=True,
            verbose=True,
            ocr=use_ocr,
        )
        simple_time = time.time() - start_time
        progress_data.append(
            {"Technique": "SimpleRAG", "Time Taken (s)": f"{simple_time:.2f}"}
        )
        yield IngestResult(
            status_text=f"SimpleRAG ingestion complete. Time taken: {simple_time:.2f} seconds\n\n",
            progress_table=pd.DataFrame(progress_data),
        )

    @spaces.GPU(duration=120)
    def ingest_vision_rag():
        yield IngestResult(
            status_text="Starting VisionRAG ingestion...\n",
            progress_table=pd.DataFrame(progress_data),
        )
        start_time = time.time()
        vision_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
        vision_time = time.time() - start_time
        progress_data.append(
            {"Technique": "VisionRAG", "Time Taken (s)": f"{vision_time:.2f}"}
        )
        yield IngestResult(
            status_text=f"VisionRAG ingestion complete. Time taken: {vision_time:.2f} seconds\n\n",
            progress_table=pd.DataFrame(progress_data),
        )

    @spaces.GPU(duration=120)
    def ingest_colpali_rag():
        yield IngestResult(
            status_text="Starting ColpaliRAG ingestion...\n",
            progress_table=pd.DataFrame(progress_data),
        )
        start_time = time.time()
        colpali_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
        colpali_time = time.time() - start_time
        progress_data.append(
            {"Technique": "ColpaliRAG", "Time Taken (s)": f"{colpali_time:.2f}"}
        )
        yield IngestResult(
            status_text=f"ColpaliRAG ingestion complete. Time taken: {colpali_time:.2f} seconds\n\n",
            progress_table=pd.DataFrame(progress_data),
        )

    @spaces.GPU(duration=120)
    def ingest_hybrid_rag():
        yield IngestResult(
            status_text="Starting HybridColpaliRAG ingestion...\n",
            progress_table=pd.DataFrame(progress_data),
        )
        start_time = time.time()
        hybrid_rag.index(file_paths, overwrite=False, recursive=False, verbose=True)
        hybrid_time = time.time() - start_time
        progress_data.append(
            {"Technique": "HybridColpaliRAG", "Time Taken (s)": f"{hybrid_time:.2f}"}
        )
        yield IngestResult(
            status_text=f"HybridColpaliRAG ingestion complete. Time taken: {hybrid_time:.2f} seconds\n\n",
            progress_table=pd.DataFrame(progress_data),
        )

    # Call each ingestion function
    yield from ingest_simple_rag()
    yield from ingest_vision_rag()
    yield from ingest_colpali_rag()
    yield from ingest_hybrid_rag()

    total_time = time.time() - total_start_time
    progress_data.append({"Technique": "Total", "Time Taken (s)": f"{total_time:.2f}"})
    yield IngestResult(
        status_text=f"Total ingestion time: {total_time:.2f} seconds",
        progress_table=pd.DataFrame(progress_data),
    )


@spaces.GPU(duration=120)
def retrieve_data(query, top_k, sequential=False):
    results = {}
    timings = {}

    def retrieve_simple():
        start_time = time.time()
        simple_results = simple_rag.search(query, k=top_k)

        print(simple_results)

        simple_context = []
        for i, r in enumerate(simple_results, 1):
            context_piece = f"Result {i}:\n"
            context_piece += f"Source: {r.get('document_name', 'Unknown')}\n"
            context_piece += f"Chunk Index: {r.get('chunk_index', 'Unknown')}\n"

            context_piece += f"Content:\n{r['text']}\n"
            context_piece += "-" * 40 + "\n"  # Separator
            simple_context.append(context_piece)

        simple_context = "\n".join(simple_context)
        end_time = time.time()
        return "SimpleRAG", simple_context, end_time - start_time

    def retrieve_vision():
        start_time = time.time()
        vision_results = vision_rag.search(query, k=top_k)
        vision_images = [r["image"] for r in vision_results]
        end_time = time.time()
        return "VisionRAG", vision_images, end_time - start_time

    def retrieve_colpali():
        start_time = time.time()
        colpali_results = colpali_rag.search(query, k=top_k)
        colpali_images = [r["image"] for r in colpali_results]
        end_time = time.time()
        return "ColpaliRAG", colpali_images, end_time - start_time

    def retrieve_hybrid():
        start_time = time.time()
        hybrid_results = hybrid_rag.search(query, k=top_k, use_image_search=True)
        hybrid_images = [r["image"] for r in hybrid_results]
        end_time = time.time()
        return "HybridColpaliRAG", hybrid_images, end_time - start_time

    retrieval_functions = [
        retrieve_simple,
        retrieve_vision,
        retrieve_colpali,
        retrieve_hybrid,
    ]

    if sequential:
        for func in retrieval_functions:
            rag_type, content, timing = func()
            results[rag_type] = content
            timings[rag_type] = timing
    else:
        with concurrent.futures.ThreadPoolExecutor() as executor:
            future_results = [executor.submit(func) for func in retrieval_functions]
            for future in concurrent.futures.as_completed(future_results):
                rag_type, content, timing = future.result()
                results[rag_type] = content
                timings[rag_type] = timing

    return results, timings


# @spaces.GPU
# def query_data(query, retrieved_results):
#     results = {}

#     # SimpleRAG
#     simple_context = retrieved_results["SimpleRAG"]
#     simple_response = llm.query(
#         context=simple_context,
#         system_prompt="Given the below information answer the questions",
#         query=query,
#     )
#     results["SimpleRAG"] = {"response": simple_response, "context": simple_context}

#     # VisionRAG
#     vision_images = retrieved_results["VisionRAG"]
#     vision_context = f"Query: {query}\n\nRelevant image information:\n" + "\n".join(
#         [f"Image {i+1}" for i in range(len(vision_images))]
#     )
#     vision_response = vlm.query(vision_context, vision_images, max_tokens=500)
#     results["VisionRAG"] = {
#         "response": vision_response,
#         "context": vision_context,
#         "images": vision_images,
#     }

#     # ColpaliRAG
#     colpali_images = retrieved_results["ColpaliRAG"]
#     colpali_context = f"Query: {query}\n\nRelevant image information:\n" + "\n".join(
#         [f"Image {i+1}" for i in range(len(colpali_images))]
#     )
#     colpali_response = vlm.query(colpali_context, colpali_images, max_tokens=500)
#     results["ColpaliRAG"] = {
#         "response": colpali_response,
#         "context": colpali_context,
#         "images": colpali_images,
#     }

#     # HybridColpaliRAG
#     hybrid_images = retrieved_results["HybridColpaliRAG"]
#     hybrid_context = f"Query: {query}\n\nRelevant image information:\n" + "\n".join(
#         [f"Image {i+1}" for i in range(len(hybrid_images))]
#     )
#     hybrid_response = vlm.query(hybrid_context, hybrid_images, max_tokens=500)
#     results["HybridColpaliRAG"] = {
#         "response": hybrid_response,
#         "context": hybrid_context,
#         "images": hybrid_images,
#     }

#     return results


def update_api_key(api_key):
    os.environ["OPENAI_API_KEY"] = api_key
    return "API key updated successfully."


def change_table(simple_table, vision_table, colpali_table, hybrid_table):
    simple_rag.change_table(simple_table)
    vision_rag.change_table(vision_table)
    colpali_rag.change_table(colpali_table)
    hybrid_rag.change_table(hybrid_table)
    return "Table names updated successfully."


def gradio_interface():
    with gr.Blocks(
        theme=gr.themes.Monochrome(radius_size=gr.themes.sizes.radius_none)
    ) as demo:
        gr.Markdown(
            """
# πŸ‘οΈπŸ‘οΈ Vision RAG Playground

### Explore and Compare Vision-Augmented Retrieval Techniques
Built on [VARAG](https://github.com/adithya-s-k/VARAG) - Vision-Augmented Retrieval and Generation

**[⭐ Star the Repository](https://github.com/adithya-s-k/VARAG)** to support the project!

1. **Simple RAG**: Text-based retrieval with OCR support for scanned documents.
2. **Vision RAG**: Combines text and image retrieval using cross-modal embeddings.
3. **ColPali RAG**: Embeds entire document pages as images for layout-aware retrieval.
4. **Hybrid ColPali RAG**: Two-stage retrieval combining image embeddings and ColPali's token-level matching.

            """
        )

        with gr.Tab("Ingest Data"):
            gr.Markdown(
                """
## ⚠️ Important Note on Data Ingestion

This Space has a maximum GPU-enabled time of 120 seconds. It's recommended to try ingesting only 1 or 2 pdfs at a time.

If you want to ingest a larger amount of data, please try it out in a Google Colab notebook:

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/adithya-s-k/VARAG/blob/main/docs/demo.ipynb)

                """
            )
            pdf_input = gr.File(
                label="Upload PDF(s)", file_count="multiple", file_types=["pdf"]
            )
            use_ocr = gr.Checkbox(label="Use OCR (for SimpleRAG)")
            chunk_size = gr.Slider(
                50, 5000, value=200, step=10, label="Chunk Size (for SimpleRAG)"
            )
            ingest_button = gr.Button("Ingest PDFs")
            ingest_output = gr.Markdown(
                label="Ingestion Status :",
            )
            progress_table = gr.DataFrame(
                label="Ingestion Progress", headers=["Technique", "Time Taken (s)"]
            )

        with gr.Tab("Retrieve and Query Data"):
            query_input = gr.Textbox(label="Enter your query")
            top_k_slider = gr.Slider(1, 10, value=3, step=1, label="Top K Results")
            sequential_checkbox = gr.Checkbox(label="Sequential Retrieval", value=False)
            retrieve_button = gr.Button("Retrieve")
            query_button = gr.Button("Query")

            retrieval_timing = gr.DataFrame(
                label="Retrieval Timings", headers=["RAG Type", "Time (s)"]
            )

            with gr.Row():
                with gr.Column():
                    with gr.Accordion("SimpleRAG", open=True):
                        simple_content = gr.Textbox(
                            label="SimpleRAG Content", lines=10, max_lines=10
                        )
                        simple_response = gr.Markdown(label="SimpleRAG Response")
                with gr.Column():
                    with gr.Accordion("VisionRAG", open=True):
                        vision_gallery = gr.Gallery(label="VisionRAG Images")
                        vision_response = gr.Markdown(label="VisionRAG Response")

            with gr.Row():
                with gr.Column():
                    with gr.Accordion("ColpaliRAG", open=True):
                        colpali_gallery = gr.Gallery(label="ColpaliRAG Images")
                        colpali_response = gr.Markdown(label="ColpaliRAG Response")
                with gr.Column():
                    with gr.Accordion("HybridColpaliRAG", open=True):
                        hybrid_gallery = gr.Gallery(label="HybridColpaliRAG Images")
                        hybrid_response = gr.Markdown(label="HybridColpaliRAG Response")

        with gr.Tab("Settings"):
            api_key_input = gr.Textbox(label="OpenAI API Key", type="password")
            update_api_button = gr.Button("Update API Key")
            api_update_status = gr.Textbox(label="API Update Status")

            simple_table_input = gr.Textbox(
                label="SimpleRAG Table Name", value="simpleDemo"
            )
            vision_table_input = gr.Textbox(
                label="VisionRAG Table Name", value="visionDemo"
            )
            colpali_table_input = gr.Textbox(
                label="ColpaliRAG Table Name", value="colpaliDemo"
            )
            hybrid_table_input = gr.Textbox(
                label="HybridColpaliRAG Table Name", value="hybridDemo"
            )
            update_table_button = gr.Button("Update Table Names")
            table_update_status = gr.Textbox(label="Table Update Status")

        retrieved_results = gr.State({})

        def update_retrieval_results(query, top_k, sequential):
            results, timings = retrieve_data(query, top_k, sequential)
            timing_df = pd.DataFrame(
                list(timings.items()), columns=["RAG Type", "Time (s)"]
            )
            return (
                results["SimpleRAG"],
                results["VisionRAG"],
                results["ColpaliRAG"],
                results["HybridColpaliRAG"],
                timing_df,
                results,
            )

        retrieve_button.click(
            update_retrieval_results,
            inputs=[query_input, top_k_slider, sequential_checkbox],
            outputs=[
                simple_content,
                vision_gallery,
                colpali_gallery,
                hybrid_gallery,
                retrieval_timing,
                retrieved_results,
            ],
        )

        # def update_query_results(query, retrieved_results):
        #     results = query_data(query, retrieved_results)
        #     return (
        #         results["SimpleRAG"]["response"],
        #         results["VisionRAG"]["response"],
        #         results["ColpaliRAG"]["response"],
        #         results["HybridColpaliRAG"]["response"],
        #     )

        # query_button.click(
        #     update_query_results,
        #     inputs=[query_input, retrieved_results],
        #     outputs=[
        #         simple_response,
        #         vision_response,
        #         colpali_response,
        #         hybrid_response,
        #     ],
        # )

        ingest_button.click(
            ingest_data,
            inputs=[pdf_input, use_ocr, chunk_size],
            outputs=[ingest_output, progress_table],
        )

        update_api_button.click(
            update_api_key, inputs=[api_key_input], outputs=api_update_status
        )

        update_table_button.click(
            change_table,
            inputs=[
                simple_table_input,
                vision_table_input,
                colpali_table_input,
                hybrid_table_input,
            ],
            outputs=table_update_status,
        )

    return demo


# Parse command-line arguments
def parse_args():
    parser = argparse.ArgumentParser(description="VisionRAG Gradio App")
    parser.add_argument(
        "--share", action="store_true", help="Enable Gradio share feature"
    )
    return parser.parse_args()


# Launch the app
if __name__ == "__main__":
    args = parse_args()
    app = gradio_interface()
    app.launch(share=args.share)