|
""" from https://github.com/jaywalnut310/glow-tts """ |
|
|
|
import math |
|
|
|
import torch |
|
|
|
from model.base import BaseModule |
|
from model.utils import sequence_mask, convert_pad_shape |
|
|
|
|
|
class LayerNorm(BaseModule): |
|
def __init__(self, channels, eps=1e-4): |
|
super(LayerNorm, self).__init__() |
|
self.channels = channels |
|
self.eps = eps |
|
|
|
self.gamma = torch.nn.Parameter(torch.ones(channels)) |
|
self.beta = torch.nn.Parameter(torch.zeros(channels)) |
|
|
|
def forward(self, x): |
|
n_dims = len(x.shape) |
|
mean = torch.mean(x, 1, keepdim=True) |
|
variance = torch.mean((x - mean)**2, 1, keepdim=True) |
|
|
|
x = (x - mean) * torch.rsqrt(variance + self.eps) |
|
|
|
shape = [1, -1] + [1] * (n_dims - 2) |
|
x = x * self.gamma.view(*shape) + self.beta.view(*shape) |
|
return x |
|
|
|
|
|
class ConvReluNorm(BaseModule): |
|
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, |
|
n_layers, p_dropout): |
|
super(ConvReluNorm, self).__init__() |
|
self.in_channels = in_channels |
|
self.hidden_channels = hidden_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = kernel_size |
|
self.n_layers = n_layers |
|
self.p_dropout = p_dropout |
|
|
|
self.conv_layers = torch.nn.ModuleList() |
|
self.norm_layers = torch.nn.ModuleList() |
|
self.conv_layers.append(torch.nn.Conv1d(in_channels, hidden_channels, |
|
kernel_size, padding=kernel_size//2)) |
|
self.norm_layers.append(LayerNorm(hidden_channels)) |
|
self.relu_drop = torch.nn.Sequential(torch.nn.ReLU(), torch.nn.Dropout(p_dropout)) |
|
for _ in range(n_layers - 1): |
|
self.conv_layers.append(torch.nn.Conv1d(hidden_channels, hidden_channels, |
|
kernel_size, padding=kernel_size//2)) |
|
self.norm_layers.append(LayerNorm(hidden_channels)) |
|
self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1) |
|
self.proj.weight.data.zero_() |
|
self.proj.bias.data.zero_() |
|
|
|
def forward(self, x, x_mask): |
|
x_org = x |
|
for i in range(self.n_layers): |
|
x = self.conv_layers[i](x * x_mask) |
|
x = self.norm_layers[i](x) |
|
x = self.relu_drop(x) |
|
x = x_org + self.proj(x) |
|
return x * x_mask |
|
|
|
|
|
class DurationPredictor(BaseModule): |
|
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout): |
|
super(DurationPredictor, self).__init__() |
|
self.in_channels = in_channels |
|
self.filter_channels = filter_channels |
|
self.p_dropout = p_dropout |
|
|
|
self.drop = torch.nn.Dropout(p_dropout) |
|
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, |
|
kernel_size, padding=kernel_size//2) |
|
self.norm_1 = LayerNorm(filter_channels) |
|
self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, |
|
kernel_size, padding=kernel_size//2) |
|
self.norm_2 = LayerNorm(filter_channels) |
|
self.proj = torch.nn.Conv1d(filter_channels, 1, 1) |
|
|
|
def forward(self, x, x_mask): |
|
x = self.conv_1(x * x_mask) |
|
x = torch.relu(x) |
|
x = self.norm_1(x) |
|
x = self.drop(x) |
|
x = self.conv_2(x * x_mask) |
|
x = torch.relu(x) |
|
x = self.norm_2(x) |
|
x = self.drop(x) |
|
x = self.proj(x * x_mask) |
|
return x * x_mask |
|
|
|
|
|
class MultiHeadAttention(BaseModule): |
|
def __init__(self, channels, out_channels, n_heads, window_size=None, |
|
heads_share=True, p_dropout=0.0, proximal_bias=False, |
|
proximal_init=False): |
|
super(MultiHeadAttention, self).__init__() |
|
assert channels % n_heads == 0 |
|
|
|
self.channels = channels |
|
self.out_channels = out_channels |
|
self.n_heads = n_heads |
|
self.window_size = window_size |
|
self.heads_share = heads_share |
|
self.proximal_bias = proximal_bias |
|
self.p_dropout = p_dropout |
|
self.attn = None |
|
|
|
self.k_channels = channels // n_heads |
|
self.conv_q = torch.nn.Conv1d(channels, channels, 1) |
|
self.conv_k = torch.nn.Conv1d(channels, channels, 1) |
|
self.conv_v = torch.nn.Conv1d(channels, channels, 1) |
|
if window_size is not None: |
|
n_heads_rel = 1 if heads_share else n_heads |
|
rel_stddev = self.k_channels**-0.5 |
|
self.emb_rel_k = torch.nn.Parameter(torch.randn(n_heads_rel, |
|
window_size * 2 + 1, self.k_channels) * rel_stddev) |
|
self.emb_rel_v = torch.nn.Parameter(torch.randn(n_heads_rel, |
|
window_size * 2 + 1, self.k_channels) * rel_stddev) |
|
self.conv_o = torch.nn.Conv1d(channels, out_channels, 1) |
|
self.drop = torch.nn.Dropout(p_dropout) |
|
|
|
torch.nn.init.xavier_uniform_(self.conv_q.weight) |
|
torch.nn.init.xavier_uniform_(self.conv_k.weight) |
|
if proximal_init: |
|
self.conv_k.weight.data.copy_(self.conv_q.weight.data) |
|
self.conv_k.bias.data.copy_(self.conv_q.bias.data) |
|
torch.nn.init.xavier_uniform_(self.conv_v.weight) |
|
|
|
def forward(self, x, c, attn_mask=None): |
|
q = self.conv_q(x) |
|
k = self.conv_k(c) |
|
v = self.conv_v(c) |
|
|
|
x, self.attn = self.attention(q, k, v, mask=attn_mask) |
|
|
|
x = self.conv_o(x) |
|
return x |
|
|
|
def attention(self, query, key, value, mask=None): |
|
b, d, t_s, t_t = (*key.size(), query.size(2)) |
|
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) |
|
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) |
|
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) |
|
|
|
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels) |
|
if self.window_size is not None: |
|
assert t_s == t_t, "Relative attention is only available for self-attention." |
|
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) |
|
rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings) |
|
rel_logits = self._relative_position_to_absolute_position(rel_logits) |
|
scores_local = rel_logits / math.sqrt(self.k_channels) |
|
scores = scores + scores_local |
|
if self.proximal_bias: |
|
assert t_s == t_t, "Proximal bias is only available for self-attention." |
|
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, |
|
dtype=scores.dtype) |
|
if mask is not None: |
|
scores = scores.masked_fill(mask == 0, -1e4) |
|
p_attn = torch.nn.functional.softmax(scores, dim=-1) |
|
p_attn = self.drop(p_attn) |
|
output = torch.matmul(p_attn, value) |
|
if self.window_size is not None: |
|
relative_weights = self._absolute_position_to_relative_position(p_attn) |
|
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) |
|
output = output + self._matmul_with_relative_values(relative_weights, |
|
value_relative_embeddings) |
|
output = output.transpose(2, 3).contiguous().view(b, d, t_t) |
|
return output, p_attn |
|
|
|
def _matmul_with_relative_values(self, x, y): |
|
ret = torch.matmul(x, y.unsqueeze(0)) |
|
return ret |
|
|
|
def _matmul_with_relative_keys(self, x, y): |
|
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) |
|
return ret |
|
|
|
def _get_relative_embeddings(self, relative_embeddings, length): |
|
pad_length = max(length - (self.window_size + 1), 0) |
|
slice_start_position = max((self.window_size + 1) - length, 0) |
|
slice_end_position = slice_start_position + 2 * length - 1 |
|
if pad_length > 0: |
|
padded_relative_embeddings = torch.nn.functional.pad( |
|
relative_embeddings, convert_pad_shape([[0, 0], |
|
[pad_length, pad_length], [0, 0]])) |
|
else: |
|
padded_relative_embeddings = relative_embeddings |
|
used_relative_embeddings = padded_relative_embeddings[:, |
|
slice_start_position:slice_end_position] |
|
return used_relative_embeddings |
|
|
|
def _relative_position_to_absolute_position(self, x): |
|
batch, heads, length, _ = x.size() |
|
x = torch.nn.functional.pad(x, convert_pad_shape([[0,0],[0,0],[0,0],[0,1]])) |
|
x_flat = x.view([batch, heads, length * 2 * length]) |
|
x_flat = torch.nn.functional.pad(x_flat, convert_pad_shape([[0,0],[0,0],[0,length-1]])) |
|
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:] |
|
return x_final |
|
|
|
def _absolute_position_to_relative_position(self, x): |
|
batch, heads, length, _ = x.size() |
|
x = torch.nn.functional.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]])) |
|
x_flat = x.view([batch, heads, length**2 + length*(length - 1)]) |
|
x_flat = torch.nn.functional.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]])) |
|
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:] |
|
return x_final |
|
|
|
def _attention_bias_proximal(self, length): |
|
r = torch.arange(length, dtype=torch.float32) |
|
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) |
|
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) |
|
|
|
|
|
class FFN(BaseModule): |
|
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, |
|
p_dropout=0.0): |
|
super(FFN, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.filter_channels = filter_channels |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
|
|
self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, |
|
padding=kernel_size//2) |
|
self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size, |
|
padding=kernel_size//2) |
|
self.drop = torch.nn.Dropout(p_dropout) |
|
|
|
def forward(self, x, x_mask): |
|
x = self.conv_1(x * x_mask) |
|
x = torch.relu(x) |
|
x = self.drop(x) |
|
x = self.conv_2(x * x_mask) |
|
return x * x_mask |
|
|
|
|
|
class Encoder(BaseModule): |
|
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, |
|
kernel_size=1, p_dropout=0.0, window_size=None, **kwargs): |
|
super(Encoder, self).__init__() |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.window_size = window_size |
|
|
|
self.drop = torch.nn.Dropout(p_dropout) |
|
self.attn_layers = torch.nn.ModuleList() |
|
self.norm_layers_1 = torch.nn.ModuleList() |
|
self.ffn_layers = torch.nn.ModuleList() |
|
self.norm_layers_2 = torch.nn.ModuleList() |
|
for _ in range(self.n_layers): |
|
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, |
|
n_heads, window_size=window_size, p_dropout=p_dropout)) |
|
self.norm_layers_1.append(LayerNorm(hidden_channels)) |
|
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, |
|
filter_channels, kernel_size, p_dropout=p_dropout)) |
|
self.norm_layers_2.append(LayerNorm(hidden_channels)) |
|
|
|
def forward(self, x, x_mask): |
|
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) |
|
for i in range(self.n_layers): |
|
x = x * x_mask |
|
y = self.attn_layers[i](x, x, attn_mask) |
|
y = self.drop(y) |
|
x = self.norm_layers_1[i](x + y) |
|
y = self.ffn_layers[i](x, x_mask) |
|
y = self.drop(y) |
|
x = self.norm_layers_2[i](x + y) |
|
x = x * x_mask |
|
return x |
|
|
|
|
|
class TextEncoder(BaseModule): |
|
def __init__(self, n_vocab, n_feats, n_channels, filter_channels, |
|
filter_channels_dp, n_heads, n_layers, kernel_size, |
|
p_dropout, window_size=None, spk_emb_dim=64, n_spks=1): |
|
super(TextEncoder, self).__init__() |
|
self.n_vocab = n_vocab |
|
self.n_feats = n_feats |
|
self.n_channels = n_channels |
|
self.filter_channels = filter_channels |
|
self.filter_channels_dp = filter_channels_dp |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.window_size = window_size |
|
self.spk_emb_dim = spk_emb_dim |
|
self.n_spks = n_spks |
|
|
|
self.emb = torch.nn.Embedding(n_vocab, n_channels) |
|
torch.nn.init.normal_(self.emb.weight, 0.0, n_channels**-0.5) |
|
|
|
self.prenet = ConvReluNorm(n_channels, n_channels, n_channels, |
|
kernel_size=5, n_layers=3, p_dropout=0.5) |
|
|
|
self.encoder = Encoder(n_channels + (spk_emb_dim if n_spks > 1 else 0), filter_channels, n_heads, n_layers, |
|
kernel_size, p_dropout, window_size=window_size) |
|
|
|
self.proj_m = torch.nn.Conv1d(n_channels + (spk_emb_dim if n_spks > 1 else 0), n_feats, 1) |
|
self.proj_w = DurationPredictor(n_channels + (spk_emb_dim if n_spks > 1 else 0), filter_channels_dp, |
|
kernel_size, p_dropout) |
|
|
|
def forward(self, x, x_lengths, spk=None): |
|
x = self.emb(x) * math.sqrt(self.n_channels) |
|
x = torch.transpose(x, 1, -1) |
|
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) |
|
|
|
x = self.prenet(x, x_mask) |
|
if self.n_spks > 1: |
|
x = torch.cat([x, spk.unsqueeze(-1).repeat(1, 1, x.shape[-1])], dim=1) |
|
x = self.encoder(x, x_mask) |
|
mu = self.proj_m(x) * x_mask |
|
|
|
x_dp = torch.detach(x) |
|
logw = self.proj_w(x_dp, x_mask) |
|
|
|
return mu, logw, x_mask |
|
|