File size: 11,298 Bytes
9705b6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
// const { Agent, ProxyAgent } = require('undici');
const BaseClient = require('./BaseClient');
const { encoding_for_model: encodingForModel, get_encoding: getEncoding } = require('tiktoken');
const Anthropic = require('@anthropic-ai/sdk');
const HUMAN_PROMPT = '\n\nHuman:';
const AI_PROMPT = '\n\nAssistant:';
const tokenizersCache = {};
class AnthropicClient extends BaseClient {
constructor(apiKey, options = {}, cacheOptions = {}) {
super(apiKey, options, cacheOptions);
this.apiKey = apiKey || process.env.ANTHROPIC_API_KEY;
this.sender = 'Anthropic';
this.userLabel = HUMAN_PROMPT;
this.assistantLabel = AI_PROMPT;
this.setOptions(options);
}
setOptions(options) {
if (this.options && !this.options.replaceOptions) {
// nested options aren't spread properly, so we need to do this manually
this.options.modelOptions = {
...this.options.modelOptions,
...options.modelOptions,
};
delete options.modelOptions;
// now we can merge options
this.options = {
...this.options,
...options,
};
} else {
this.options = options;
}
const modelOptions = this.options.modelOptions || {};
this.modelOptions = {
...modelOptions,
// set some good defaults (check for undefined in some cases because they may be 0)
model: modelOptions.model || 'claude-1',
temperature: typeof modelOptions.temperature === 'undefined' ? 0.7 : modelOptions.temperature, // 0 - 1, 0.7 is recommended
topP: typeof modelOptions.topP === 'undefined' ? 0.7 : modelOptions.topP, // 0 - 1, default: 0.7
topK: typeof modelOptions.topK === 'undefined' ? 40 : modelOptions.topK, // 1-40, default: 40
stop: modelOptions.stop, // no stop method for now
};
this.maxContextTokens = this.options.maxContextTokens || 99999;
this.maxResponseTokens = this.modelOptions.maxOutputTokens || 1500;
this.maxPromptTokens =
this.options.maxPromptTokens || this.maxContextTokens - this.maxResponseTokens;
if (this.maxPromptTokens + this.maxResponseTokens > this.maxContextTokens) {
throw new Error(
`maxPromptTokens + maxOutputTokens (${this.maxPromptTokens} + ${this.maxResponseTokens} = ${
this.maxPromptTokens + this.maxResponseTokens
}) must be less than or equal to maxContextTokens (${this.maxContextTokens})`,
);
}
this.startToken = '||>';
this.endToken = '';
this.gptEncoder = this.constructor.getTokenizer('cl100k_base');
if (!this.modelOptions.stop) {
const stopTokens = [this.startToken];
if (this.endToken && this.endToken !== this.startToken) {
stopTokens.push(this.endToken);
}
stopTokens.push(`${this.userLabel}`);
stopTokens.push('<|diff_marker|>');
this.modelOptions.stop = stopTokens;
}
return this;
}
getClient() {
if (this.options.reverseProxyUrl) {
return new Anthropic({
apiKey: this.apiKey,
baseURL: this.options.reverseProxyUrl,
});
} else {
return new Anthropic({
apiKey: this.apiKey,
});
}
}
async buildMessages(messages, parentMessageId) {
const orderedMessages = this.constructor.getMessagesForConversation({
messages,
parentMessageId,
});
if (this.options.debug) {
console.debug('AnthropicClient: orderedMessages', orderedMessages, parentMessageId);
}
const formattedMessages = orderedMessages.map((message) => ({
author: message.isCreatedByUser ? this.userLabel : this.assistantLabel,
content: message?.content ?? message.text,
}));
let lastAuthor = '';
let groupedMessages = [];
for (let message of formattedMessages) {
// If last author is not same as current author, add to new group
if (lastAuthor !== message.author) {
groupedMessages.push({
author: message.author,
content: [message.content],
});
lastAuthor = message.author;
// If same author, append content to the last group
} else {
groupedMessages[groupedMessages.length - 1].content.push(message.content);
}
}
let identityPrefix = '';
if (this.options.userLabel) {
identityPrefix = `\nHuman's name: ${this.options.userLabel}`;
}
if (this.options.modelLabel) {
identityPrefix = `${identityPrefix}\nYou are ${this.options.modelLabel}`;
}
let promptPrefix = (this.options.promptPrefix || '').trim();
if (promptPrefix) {
// If the prompt prefix doesn't end with the end token, add it.
if (!promptPrefix.endsWith(`${this.endToken}`)) {
promptPrefix = `${promptPrefix.trim()}${this.endToken}\n\n`;
}
promptPrefix = `\nContext:\n${promptPrefix}`;
}
if (identityPrefix) {
promptPrefix = `${identityPrefix}${promptPrefix}`;
}
// Prompt AI to respond, empty if last message was from AI
let isEdited = lastAuthor === this.assistantLabel;
const promptSuffix = isEdited ? '' : `${promptPrefix}${this.assistantLabel}\n`;
let currentTokenCount = isEdited
? this.getTokenCount(promptPrefix)
: this.getTokenCount(promptSuffix);
let promptBody = '';
const maxTokenCount = this.maxPromptTokens;
const context = [];
// Iterate backwards through the messages, adding them to the prompt until we reach the max token count.
// Do this within a recursive async function so that it doesn't block the event loop for too long.
// Also, remove the next message when the message that puts us over the token limit is created by the user.
// Otherwise, remove only the exceeding message. This is due to Anthropic's strict payload rule to start with "Human:".
const nextMessage = {
remove: false,
tokenCount: 0,
messageString: '',
};
const buildPromptBody = async () => {
if (currentTokenCount < maxTokenCount && groupedMessages.length > 0) {
const message = groupedMessages.pop();
const isCreatedByUser = message.author === this.userLabel;
// Use promptPrefix if message is edited assistant'
const messagePrefix =
isCreatedByUser || !isEdited ? message.author : `${promptPrefix}${message.author}`;
const messageString = `${messagePrefix}\n${message.content}${this.endToken}\n`;
let newPromptBody = `${messageString}${promptBody}`;
context.unshift(message);
const tokenCountForMessage = this.getTokenCount(messageString);
const newTokenCount = currentTokenCount + tokenCountForMessage;
if (!isCreatedByUser) {
nextMessage.messageString = messageString;
nextMessage.tokenCount = tokenCountForMessage;
}
if (newTokenCount > maxTokenCount) {
if (!promptBody) {
// This is the first message, so we can't add it. Just throw an error.
throw new Error(
`Prompt is too long. Max token count is ${maxTokenCount}, but prompt is ${newTokenCount} tokens long.`,
);
}
// Otherwise, ths message would put us over the token limit, so don't add it.
// if created by user, remove next message, otherwise remove only this message
if (isCreatedByUser) {
nextMessage.remove = true;
}
return false;
}
promptBody = newPromptBody;
currentTokenCount = newTokenCount;
// Switch off isEdited after using it for the first time
if (isEdited) {
isEdited = false;
}
// wait for next tick to avoid blocking the event loop
await new Promise((resolve) => setImmediate(resolve));
return buildPromptBody();
}
return true;
};
await buildPromptBody();
if (nextMessage.remove) {
promptBody = promptBody.replace(nextMessage.messageString, '');
currentTokenCount -= nextMessage.tokenCount;
context.shift();
}
let prompt = `${promptBody}${promptSuffix}`;
// Add 2 tokens for metadata after all messages have been counted.
currentTokenCount += 2;
// Use up to `this.maxContextTokens` tokens (prompt + response), but try to leave `this.maxTokens` tokens for the response.
this.modelOptions.maxOutputTokens = Math.min(
this.maxContextTokens - currentTokenCount,
this.maxResponseTokens,
);
return { prompt, context };
}
getCompletion() {
console.log('AnthropicClient doesn\'t use getCompletion (all handled in sendCompletion)');
}
async sendCompletion(payload, { onProgress, abortController }) {
if (!abortController) {
abortController = new AbortController();
}
const { signal } = abortController;
const modelOptions = { ...this.modelOptions };
if (typeof onProgress === 'function') {
modelOptions.stream = true;
}
const { debug } = this.options;
if (debug) {
console.debug();
console.debug(modelOptions);
console.debug();
}
const client = this.getClient();
const metadata = {
user_id: this.user,
};
let text = '';
const {
stream,
model,
temperature,
maxOutputTokens,
stop: stop_sequences,
topP: top_p,
topK: top_k,
} = this.modelOptions;
const requestOptions = {
prompt: payload,
model,
stream: stream || true,
max_tokens_to_sample: maxOutputTokens || 1500,
stop_sequences,
temperature,
metadata,
top_p,
top_k,
};
if (this.options.debug) {
console.log('AnthropicClient: requestOptions');
console.dir(requestOptions, { depth: null });
}
const response = await client.completions.create(requestOptions);
signal.addEventListener('abort', () => {
if (this.options.debug) {
console.log('AnthropicClient: message aborted!');
}
response.controller.abort();
});
for await (const completion of response) {
if (this.options.debug) {
// Uncomment to debug message stream
// console.debug(completion);
}
text += completion.completion;
onProgress(completion.completion);
}
signal.removeEventListener('abort', () => {
if (this.options.debug) {
console.log('AnthropicClient: message aborted!');
}
response.controller.abort();
});
return text.trim();
}
getSaveOptions() {
return {
promptPrefix: this.options.promptPrefix,
modelLabel: this.options.modelLabel,
...this.modelOptions,
};
}
getBuildMessagesOptions() {
if (this.options.debug) {
console.log('AnthropicClient doesn\'t use getBuildMessagesOptions');
}
}
static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) {
if (tokenizersCache[encoding]) {
return tokenizersCache[encoding];
}
let tokenizer;
if (isModelName) {
tokenizer = encodingForModel(encoding, extendSpecialTokens);
} else {
tokenizer = getEncoding(encoding, extendSpecialTokens);
}
tokenizersCache[encoding] = tokenizer;
return tokenizer;
}
getTokenCount(text) {
return this.gptEncoder.encode(text, 'all').length;
}
}
module.exports = AnthropicClient;
|