import streamlit as st from gradio_client import Client from st_audiorec import st_audiorec from gtts import gTTS import os # Constants TITLE = "๐—™๐—น๐—ฎ๐˜„๐—น๐—ฒ๐˜€๐˜€๐—”๐—œ" DESCRIPTION = """""" # Sidebar with st.sidebar: temperatureSide = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05) max_new_tokensSide = st.slider("Max Tokens", min_value=0.0, max_value=4096.0, value=512.0, step=64.0) ToppSide = st.slider("Top-P (Nucleus Sampling)", min_value=0.0, max_value=1.0, value=0.6, step=0.05) RepetitionpenaltySide = st.slider("Repetition Penalty", min_value=0.0, max_value=2.0, value=1.2, step=0.05) # Function to convert text to speech using gTTS def text_to_speech(text, lang='en'): tts = gTTS(text=text, lang=lang, slow=False) tts.save("response.mp3") return "response.mp3" # Prediction function def predict(message, system_prompt='Your name is FlawlessAI. You are developed by Achyuth. Your developer is a 14-year old boy, who is interested in AI and Machine Learning. Dont talk about your developers age, until the user asks for your developers age. You need to give the user a long and big text as output with useful information. When the user asks you for information, never exclaim the words, and directly come to point and answer to the user. You need to provide short text-answers, meaningful answers and directly to the point. Never miscalculate the calculations. You need to check and verify the answer and then provide to user, the correct answer. You need to provide accurate and correct information. If the user conveys with you in any language, you also should convey in the same language', temperature=0.7, max_new_tokens=2048, Topp=0.5, Repetitionpenalty=1.2): with st.status("sแด›แด€ส€แด›ษชษดษข แด„สŸษชแด‡ษดแด›..."): client = Client("https://huggingface-projects-llama-2-13b-chat.hf.space/") st.write("Requesting Flawless-LLM...") with st.status("Processing response..."): response = client.predict( message, system_prompt, max_new_tokens, temperature, Topp, 500, Repetitionpenalty, api_name="/chat" ) st.write("Success โœ…") return response # Streamlit UI st.title(TITLE) st.write(DESCRIPTION) if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history for message in st.session_state.messages: with st.chat_message(message["role"], avatar=("๐Ÿง‘โ€๐Ÿ’ป" if message["role"] == 'human' else '๐Ÿฆ™')): st.markdown(message["content"]) # Mic input wav_audio_data = st_audiorec() # Chat input textinput = st.chat_input("Ask FlawlessAI anything...") # Handle mic input (raw audio file) if wav_audio_data is not None: st.chat_message("human", avatar="๐Ÿ˜Ž").markdown("๐ŸŽ™๏ธ Voice message recorded.") # Add to chat history st.session_state.messages.append({"role": "human", "content": "[Voice Message]"}) # (Optional: You can later connect a transcription service here if you want) # Handle text input if prompt := textinput: # Display user message st.chat_message("human", avatar="๐Ÿ”ฅ").markdown(prompt) st.session_state.messages.append({"role": "human", "content": prompt}) # Generate response response = predict(message=prompt) # Convert AI response to speech speech_file = text_to_speech(response) # Display assistant response with st.chat_message("assistant", avatar='๐Ÿ”ฅ'): st.markdown(response) st.audio(speech_file, format="audio/mp3") st.session_state.messages.append({"role": "assistant", "content": response})