crabnet-hyperparameter / train_surrogate.py
sgbaird's picture
Refactor evaluate function in app.py to include parameter scaling and unscaled evaluation
58815da
import time
import joblib
from os import path
from pathlib import Path
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# from joblib import Parallel, delayed
from sklearn.ensemble import HistGradientBoostingRegressor, RandomForestRegressor
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import KFold
from scipy.stats import uniform, randint
model_type = "hgbr" # "hgbr" or "rfr"
optimize_hyperparameters = True
dummy = False
n_jobs = -1 # Number of jobs to run in parallel. -1 means using all processors.
data_dir = "."
model_dir = "models"
assert model_type in [
"hgbr",
"rfr",
], f"Invalid model type: {model_type}, must be 'hgbr' or 'rfr'"
if dummy:
model_dir = path.join(model_dir, "dummy")
Path(model_dir).mkdir(exist_ok=True, parents=True)
sobol_reg = pd.read_csv(path.join(data_dir, "sobol_regression.csv"))
if dummy:
data_dir = path.join(data_dir, "dummy")
sobol_reg = sobol_reg.head(100)
Path(data_dir).mkdir(exist_ok=True, parents=True)
elemprop_ohe = pd.get_dummies(sobol_reg["elem_prop"], prefix="elem_prop")
hardware_ohe = pd.get_dummies(sobol_reg["hardware"], prefix="hardware")
sobol_reg["use_RobustL1"] = sobol_reg["criterion"] == "RobustL1"
sobol_reg["bias"] = sobol_reg["bias"].astype(int)
sobol_reg = pd.concat([sobol_reg, elemprop_ohe], axis=1)
common_features = [
"N",
"alpha",
"d_model",
"dim_feedforward",
"dropout",
"emb_scaler",
"eps",
"epochs_step",
"fudge",
"heads",
"k",
"lr",
"pe_resolution",
"ple_resolution",
"pos_scaler",
"weight_decay",
"batch_size",
"out_hidden4",
"betas1",
"betas2",
"train_frac",
"bias",
"use_RobustL1",
"elem_prop_magpie",
"elem_prop_mat2vec",
"elem_prop_onehot",
]
mae_features = common_features + ["mae_rank"]
X_array_mae = sobol_reg[mae_features]
y_array_mae = sobol_reg[["mae"]]
mae_model_stem = path.join(model_dir, "sobol_reg_mae")
rmse_features = common_features + ["rmse_rank"]
X_array_rmse = sobol_reg[rmse_features]
y_array_rmse = sobol_reg[["rmse"]]
rmse_model_stem = path.join(model_dir, "sobol_reg_rmse")
# no model_size_rank because model_size is deterministic via
# `crabnet.utils.utils.count_parameters`
model_size_features = common_features
X_array_model_size = sobol_reg[model_size_features]
y_array_model_size = sobol_reg[["model_size"]]
model_size_model_stem = path.join(model_dir, "sobol_reg_model_size")
runtime_features = common_features + ["runtime_rank"]
X_array_runtime = sobol_reg[runtime_features]
y_array_runtime = sobol_reg[["runtime"]]
runtime_model_stem = path.join(model_dir, "sobol_reg_runtime")
def train_and_save(
sr_feat_array,
sr_labels_array,
sr_label_names,
optimize_hyperparameters=False,
):
models = {}
timings = {}
# cv_scores = []
avg_cv_scores = {}
cv_predictions = {}
for X1, y1, name1 in zip(sr_feat_array, sr_labels_array, sr_label_names):
y1 = y1.squeeze()
print(f"X1 sr shape: {X1.shape}, Y1 sr shape: {y1.shape}")
if model_type == "rfr":
model = RandomForestRegressor(random_state=13)
elif model_type == "hgbr":
model = HistGradientBoostingRegressor(random_state=13)
if optimize_hyperparameters:
# define hyperparameters to tune
if model.__class__.__name__ == "HistGradientBoostingRegressor":
param_dist = {
"max_iter": randint(100, 200),
"max_leaf_nodes": [None, 30, 50],
"learning_rate": uniform(0.01, 0.1),
# Add more hyperparameters here as needed
}
elif model.__class__.__name__ == "RandomForestRegressor":
param_dist = {
"n_estimators": randint(100, 200),
"max_features": ["auto", "sqrt"],
"max_depth": randint(10, 50),
"min_samples_split": randint(2, 10),
# Add more hyperparameters here as needed
}
# Use RandomizedSearchCV to tune the hyperparameters
random_search = RandomizedSearchCV(
model,
param_dist,
n_iter=10,
cv=5,
scoring="neg_mean_squared_error",
random_state=13,
n_jobs=n_jobs,
)
start_time = time.time()
# REVIEW: use y1.values.ravel() instead of y1 to flatten y1 to a 1D array
random_search.fit(X1, y1)
end_time = time.time()
# Use the best estimator found by RandomizedSearchCV
model = random_search.best_estimator_
timings[name1] = end_time - start_time
else:
start_time = time.time()
model.fit(X1, y1)
end_time = time.time()
timings[name1] = end_time - start_time
print(f"Trained {name1} in {timings[name1]} seconds")
# Perform cross-validation manually to keep track of predictions
# NOTE: This doesn't use GroupKFold, which would prevent cross-leakage for the rank column
# cv = KFold(n_splits=5)
# cv_preds = []
# for train_index, test_index in cv.split(X1):
# X_train, X_test = X1.iloc[train_index], X1.iloc[test_index]
# y_train, y_test = y1.iloc[train_index], y1.iloc[test_index]
# model.fit(X_train, y_train)
# preds = model.predict(X_test)
# cv_preds.extend(preds)
# cv_scores.append(mean_squared_error(y_test, preds))
# avg_cv_scores[name1] = np.sqrt(np.mean(cv_scores))
# cv_predictions[name1] = cv_preds
def cross_validate(X1, y1, model):
cv = KFold(n_splits=5)
cv_preds = []
cv_scores = []
for train_index, test_index in cv.split(X1):
X_train, X_test = X1.iloc[train_index], X1.iloc[test_index]
y_train, y_test = y1.iloc[train_index], y1.iloc[test_index]
model.fit(X_train, y_train)
preds = model.predict(X_test)
cv_preds.extend(preds)
cv_scores.append(mean_squared_error(y_test, preds))
return cv_preds, np.sqrt(np.mean(cv_scores))
cv_predictions[name1], avg_cv_scores[name1] = cross_validate(X1, y1, model)
# # Parallelize the outer loop
# results = Parallel(n_jobs=n_jobs)(
# delayed(cross_validate)(X1, y1, model)
# for X1, y1 in zip(sr_feat_array, sr_labels_array)
# )
# # Unpack the results
# cv_predictions, avg_cv_scores = zip(*results)
# # Convert the results to dictionaries
# cv_predictions = dict(zip(sobol_reg_target_names, cv_predictions))
# avg_cv_scores = dict(zip(sobol_reg_target_names, avg_cv_scores))
print(f"Cross-validated score for {name1}: {avg_cv_scores[name1]}")
models[name1] = model
print()
return models, timings, avg_cv_scores, cv_predictions
# List of x_arrays, y_arrays, and target_names
sobol_reg_x_arrays = [X_array_mae, X_array_rmse, X_array_model_size, X_array_runtime]
sobol_reg_labels = [y_array_mae, y_array_rmse, y_array_model_size, y_array_runtime]
sobol_reg_target_names = ["mae", "rmse", "model_size", "runtime"]
# Train and save the model on all the data
models, timings, avg_cv_scores, cv_predictions = train_and_save(
sobol_reg_x_arrays,
sobol_reg_labels,
sobol_reg_target_names,
optimize_hyperparameters=optimize_hyperparameters, # if true, probably ~16 min for iter=5 & cv=3
)
print(f"Timings (in seconds): {timings}") # doesn't include cross_val_score runtime
print(f"Cross-validated scores: {avg_cv_scores}")
# Save timings and cv_scores to a CSV file
results = pd.DataFrame(
{
"Model": list(timings.keys()),
"Timing": list(timings.values()),
"CV Score": list(avg_cv_scores.values()),
}
)
# Determine the model type and optimization status
model_type = (
"hgbr"
if isinstance(next(iter(models.values())), HistGradientBoostingRegressor)
else "rfr"
)
opt_status = "opt" if optimize_hyperparameters else "no_opt"
# Save the results and models with the updated filenames
results_filename = f"model_results_{model_type}_{opt_status}.csv"
models_filename = f"surrogate_models_{model_type}_{opt_status}.pkl"
results.to_csv(path.join(model_dir, results_filename), index=False)
joblib.dump(models, path.join(model_dir, models_filename), compress=7)
# NOTE: Can use this if looking at how well it memorizes the training data
# # Generate predictions for each model
# predictions = {
# name: model.predict(X)
# for name, model, X in zip(
# sobol_reg_target_names, models.values(), sobol_reg_x_arrays
# )
# }
# Create a 2x2 grid of subplots
fig, axs = plt.subplots(2, 2, figsize=(8, 8))
# Flatten the axs array for easy iteration
axs = axs.flatten()
for ax, name in zip(axs, sobol_reg_target_names):
# Get the true and predicted values for this model
true_values = sobol_reg[name]
predicted_values = cv_predictions[name]
# Create the hexbin plot with log scaling
hb = ax.hexbin(
true_values, predicted_values, gridsize=50, cmap="viridis", bins="log"
)
cb = plt.colorbar(hb, ax=ax)
cb.set_label("counts (log scale)")
ax.plot(
[true_values.min(), true_values.max()],
[true_values.min(), true_values.max()],
"w--",
)
ax.set_xlabel("True Values")
ax.set_ylabel("Predicted Values")
ax.set_title(f"Parity Plot for {name}")
# Set the aspect ratio to be equal
ax.set_aspect("equal")
# Adjust the layout and show the plot
plt.tight_layout()
# Save the plot with the updated filename
plot_filename = f"parity_plot_{model_type}_{opt_status}.png"
plt.savefig(path.join(model_dir, plot_filename), dpi=300)
plt.show()
1 + 1
# %% Code Graveyard
# # Compute cross-validated score
# cv_score = cross_val_score(
# model, X1, y1, cv=5, scoring="neg_mean_squared_error"
# )
# cv_scores[name1] = np.sqrt(np.abs(cv_score.mean()))