import gradio as gr from random import randint from all_models import models from externalmod import gr_Interface_load, randomize_seed import asyncio import os from threading import RLock lock = RLock() HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None def load_fn(models): global models_load models_load = {} for model in models: if model not in models_load: try: print(f"Loading model: {model}") m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) print(f"Loaded model: {model}") except Exception as error: print(f"Error loading model {model}: {error}") m = gr.Interface(lambda: None, ['text'], ['image']) models_load[model] = m print("Loading models...") load_fn(models) print("Models loaded successfully.") num_models = 16 default_models = models[:num_models] inference_timeout = 600 MAX_SEED = 3999999999 starting_seed = randint(1941, 2024) print(f"Starting seed: {starting_seed}") def extend_choices(choices): return choices[:num_models] + (num_models - len(choices)) * ['NA'] def update_imgbox(choices): choices_plus = extend_choices(choices) return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus] async def infer(model_str, prompt, seed=1, timeout=inference_timeout): kwargs = {"seed": seed} print(f"Starting inference: {model_str} | Prompt: '{prompt}' | Seed: {seed}") task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, **kwargs, token=HF_TOKEN)) try: result = await asyncio.wait_for(task, timeout=timeout) except Exception as e: print(f"Error during inference: {e}") if not task.done(): task.cancel() return None if task.done() and result: with lock: result.save("image.png") return "image.png" return None def gen_fnseed(model_str, prompt, seed=1): if model_str == 'NA': return None loop = asyncio.new_event_loop() result = loop.run_until_complete(infer(model_str, prompt, seed)) loop.close() return result print("Creating Gradio interface...") with gr.Blocks(theme="gradio/soft") as demo: gr.HTML("

TEXT-IMAGE-USING-MULTIMODELS

") with gr.Tab(): txt_input = gr.Textbox(label='Your prompt:', lines=4) gen_button = gr.Button('Generate') seed = gr.Slider("Seed", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed) seed_rand = gr.Button("Randomize Seed 🎲") seed_rand.click(randomize_seed, None, [seed]) output = [gr.Image(label=m) for m in default_models] current_models = [gr.Textbox(m, visible=False) for m in default_models] for m, o in zip(current_models, output): gen_button.click(gen_fnseed, [m, txt_input, seed], o) with gr.Accordion('Model selection'): model_choice = gr.CheckboxGroup(models, label=f'Choose up to {num_models} models', value=default_models) model_choice.change(update_imgbox, model_choice, output) model_choice.change(extend_choices, model_choice, current_models) demo.queue(default_concurrency_limit=200, max_size=200) demo.launch(show_api=False, max_threads=400)