Abijith's picture
Update app.py
b771b75 verified
raw
history blame
8.51 kB
import streamlit as st
import os
import numpy as np
import re
import tempfile
import torch
from datetime import datetime
from langchain_community.document_loaders import PDFPlumberLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import Ollama
from langchain.retrievers import BM25Retriever, EnsembleRetriever
from sentence_transformers import CrossEncoder
from transformers import pipeline
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
from huggingface_hub import login
# Load the model and tokenizer
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
# Initialize classifier once for input guardrail
classifier = pipeline("zero-shot-classification",
model="typeform/distilbert-base-uncased-mnli")
# Streamlit UI Configuration
st.set_page_config(page_title="Multi-File Financial Analyzer", layout="wide")
st.title("πŸ“Š Financial Analysis System")
# Sidebar Controls
with st.sidebar:
st.header("Configuration Panel")
model_choice = st.selectbox("LLM Model",
[model_name],
help="Choose the core analysis engine")
chunk_size = st.slider("Document Chunk Size", 500, 2000, 1000)
rerank_threshold = st.slider("Re-ranking Threshold", 0.0, 1.0, 0.1)
# File Upload Handling for multiple files
uploaded_files = st.file_uploader("Upload Financial PDFs",
type="pdf",
accept_multiple_files=True)
if uploaded_files:
all_docs = []
with st.spinner("Processing Multiple Financial Documents..."):
for uploaded_file in uploaded_files:
# Create temporary file for each PDF
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
tmp.write(uploaded_file.getvalue())
tmp_path = tmp.name
# Load and process each document
loader = PDFPlumberLoader(tmp_path)
docs = loader.load()
all_docs.extend(docs)
# Combined Document Processing
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=200,
separators=["\n\n", "\n", "\. ", "! ", "? ", " ", ""]
)
documents = text_splitter.split_documents(all_docs)
# Hybrid Retrieval Setup for combined documents
embedder = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
vector_store = FAISS.from_documents(documents, embedder)
bm25_retriever = BM25Retriever.from_documents(documents)
bm25_retriever.k = 5
faiss_retriever = vector_store.as_retriever(search_kwargs={"k": 5})
ensemble_retriever = EnsembleRetriever(
retrievers=[bm25_retriever, faiss_retriever],
weights=[0.4, 0.6]
)
# Re-ranking Model
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# Financial Analysis LLM Configuration
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
padding_side="left" # Important for some models
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
)
# Create pipeline with generation parameters
pipeline_llm = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=1024,
temperature=0.3,
top_p=0.95,
repetition_penalty=1.15,
return_full_text=False # Important for response formatting
)
llm = HuggingFacePipeline(pipeline=pipeline_llm)
# Update prompt template
PROMPT_TEMPLATE = """
<|system|>
You are a senior financial analyst. Analyze these financial reports:
1. Compare key metrics between documents
2. Identify trends across reporting periods
3. Highlight differences/similarities
4. Provide risk assessment
5. Offer recommendations
Format response with clear sections and bullet points. Keep under 300 words.
Context: {context}
Question: {question}
<|assistant|>
"""
# chat prompt template
qa_prompt = PromptTemplate(
template=PROMPT_TEMPLATE,
input_variables=["context", "question"]
)
llm_chain = LLMChain(llm=llm, prompt=qa_prompt)
# Interactive Q&A Interface
st.header("πŸ” Cross-Document Financial Inquiry")
# Suggested Comparative Questions
comparative_questions = [
"Analyze changes in debt structure across both reports",
"Show expense ratio differences between the two years",
"What are the main liquidity changes across both periods?",
]
user_query = st.selectbox("Sample Financial Questions",
[""] + comparative_questions)
user_input = st.text_input("Or enter custom financial query:",
value=user_query)
if user_input:
# Input Validation Guardrail
classification = classifier(user_input,
["financial", "other"],
multi_label=False)
print(f"-- Guard rail check is completed for query with prob:{classification['scores'][0]}")
if classification['scores'][0] < 0.2:
st.error("Query not related to financial. Ask about financial related queries")
st.stop()
with st.spinner("Performing Cross-Document Analysis..."):
# Hybrid Document Retrieval
initial_docs = ensemble_retriever.get_relevant_documents(user_input)
# Context Re-ranking
doc_pairs = [(user_input, doc.page_content) for doc in initial_docs]
rerank_scores = cross_encoder.predict(doc_pairs)
sorted_indices = np.argsort(rerank_scores)[::-1]
ranked_docs = [initial_docs[i] for i in sorted_indices]
filtered_docs = [d for d, s in zip(ranked_docs, rerank_scores)
if s > rerank_threshold][:7]
print(f"-- Retrieved chunks:{filtered_docs}")
# Confidence Calculation
confidence_score = np.mean(rerank_scores[sorted_indices][:3]) * 100
confidence_score = min(100, max(0, round(confidence_score, 1)))
# Response Generation
context = "\n".join([doc.page_content for doc in filtered_docs])
print(f"-- Retrieved context:{context}")
analysis = llm_chain.run(
context=context,
question=user_input
)
print(f"Analysis result:{analysis}")
# Response Cleaning
clean_analysis = re.sub(r"<think>|</think>|\n{3,}", "", analysis)
clean_analysis = re.sub(r'(\d)([A-Za-z])', r'\1 \2', clean_analysis)
clean_analysis = re.sub(r'(\d{1,3})(\d{3})', r'\1,\2', clean_analysis)
# Input Display
st.subheader("User Query+Context to the LLM")
st.markdown(f"```\n{qa_prompt.format(context=context, question=user_input)}\n```")
# Results Display
st.subheader("Integrated Financial Analysis")
st.markdown(f"```\n{clean_analysis}\n```")
st.progress(int(confidence_score)/100)
st.caption(f"Analysis Confidence: {confidence_score}%")
# Export Functionality
if st.button("Generate Financial Analysis Report"):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
export_content = f"COMPARATIVE QUERY: {user_input}\n\nANALYSIS:\n{clean_analysis}"
st.download_button("Download Full Report", export_content,
file_name=f"Comparative_Analysis_{timestamp}.txt",
mime="text/plain")
else:
st.info("Please upload PDF financial reports to begin financial analysis")