Spaces:
Sleeping
Sleeping
Commit
·
3dc0589
1
Parent(s):
346cacf
Upload 13 files
Browse files- assignment.py +156 -0
- bp_model.pkl +3 -0
- bp_tokeniser.pkl +3 -0
- dnn_model.pkl +3 -0
- dnn_tokeniser.pkl +3 -0
- lstm_model.pkl +3 -0
- lstm_tokeniser.pkl +3 -0
- ppn_model.pkl +3 -0
- ppn_tokeniser.pkl +3 -0
- spam_model.pkl +3 -0
- spam_tokeniser.pkl +3 -0
- tumor_detection_model.h5 +3 -0
- tumor_detection_model.pkl +3 -0
assignment.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
from PIL import Image
|
6 |
+
import pickle
|
7 |
+
|
8 |
+
|
9 |
+
st.header('Demo')
|
10 |
+
task = st.selectbox('Select Task', ["Select One",'Sentiment Classification', 'Tumor Detection'])
|
11 |
+
|
12 |
+
|
13 |
+
if task == "Tumor Detection":
|
14 |
+
def cnn(img, model):
|
15 |
+
img = Image.open(img)
|
16 |
+
img = img.resize((128, 128))
|
17 |
+
img = np.array(img)
|
18 |
+
input_img = np.expand_dims(img, axis=0)
|
19 |
+
res = model.predict(input_img)
|
20 |
+
if res:
|
21 |
+
return "Tumor Detected"
|
22 |
+
else:
|
23 |
+
return "No Tumor"
|
24 |
+
|
25 |
+
cnn_model = tf.keras.models.load_model("tumor_detection_model.h5")
|
26 |
+
uploaded_file = st.file_uploader("Choose a file", type=["jpg", "jpeg", "png"])
|
27 |
+
if uploaded_file is not None:
|
28 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
29 |
+
if st.button("Submit"):
|
30 |
+
result=cnn(uploaded_file, cnn_model)
|
31 |
+
st.write(result)
|
32 |
+
|
33 |
+
|
34 |
+
elif task == "Sentiment Classification":
|
35 |
+
types = ["Perceptron","BackPropagation", "RNN","DNN", "LSTM"]
|
36 |
+
input_text2 = st.radio("Select", types, horizontal=True)
|
37 |
+
|
38 |
+
if input_text2 == "Perceptron":
|
39 |
+
with open("ppn_model.pkl",'rb') as file:
|
40 |
+
perceptron = pickle.load(file)
|
41 |
+
with open("ppn_tokeniser.pkl",'rb') as file:
|
42 |
+
ppn_tokeniser = pickle.load(file)
|
43 |
+
|
44 |
+
def ppn_make_predictions(inp, model):
|
45 |
+
encoded_inp = ppn_tokeniser.texts_to_sequences([inp])
|
46 |
+
padded_inp = tf.keras.preprocessing.sequence.pad_sequences(encoded_inp, maxlen=500)
|
47 |
+
res = model.predict(padded_inp)
|
48 |
+
if res:
|
49 |
+
return "Negative"
|
50 |
+
else:
|
51 |
+
return "Positive"
|
52 |
+
|
53 |
+
st.subheader('Movie Review Classification using Perceptron')
|
54 |
+
inp = st.text_area('Enter message')
|
55 |
+
if st.button('Check'):
|
56 |
+
pred = ppn_make_predictions([inp], perceptron)
|
57 |
+
st.write(pred)
|
58 |
+
|
59 |
+
if input_text2 == "BackPropagation":
|
60 |
+
with open("bp_model.pkl",'rb') as file:
|
61 |
+
backprop = pickle.load(file)
|
62 |
+
with open("bp_tokeniser.pkl",'rb') as file:
|
63 |
+
bp_tokeniser = pickle.load(file)
|
64 |
+
|
65 |
+
def bp_make_predictions(inp, model):
|
66 |
+
encoded_inp = bp_tokeniser.texts_to_sequences([inp])
|
67 |
+
padded_inp = tf.keras.preprocessing.sequence.pad_sequences(encoded_inp, maxlen=500)
|
68 |
+
res = model.predict(padded_inp)
|
69 |
+
if res:
|
70 |
+
return "Negative"
|
71 |
+
else:
|
72 |
+
return "Positive"
|
73 |
+
|
74 |
+
st.subheader('Movie Review Classification using BackPropagation')
|
75 |
+
inp = st.text_area('Enter message')
|
76 |
+
if st.button('Check'):
|
77 |
+
pred = bp_make_predictions([inp], backprop)
|
78 |
+
st.write(pred)
|
79 |
+
|
80 |
+
|
81 |
+
elif input_text2 == "RNN":
|
82 |
+
with open("spam_model.pkl", 'rb') as model_file:
|
83 |
+
rnn_model=pickle.load(model_file)
|
84 |
+
with open("spam_tokeniser.pkl", 'rb') as model_file:
|
85 |
+
rnn_tokeniser=pickle.load(model_file)
|
86 |
+
|
87 |
+
def rnn_make_predictions(inp, model):
|
88 |
+
encoded_inp = rnn_tokeniser.texts_to_sequences([inp])
|
89 |
+
padded_inp = tf.keras.preprocessing.sequence.pad_sequences(encoded_inp, maxlen=10, padding='post')
|
90 |
+
res = (model.predict(padded_inp) > 0.5).astype("int32")
|
91 |
+
if res:
|
92 |
+
return "Spam"
|
93 |
+
else:
|
94 |
+
return "Ham"
|
95 |
+
|
96 |
+
st.subheader('Spam message Classification using RNN')
|
97 |
+
input = st.text_area("Give message")
|
98 |
+
if st.button('Check'):
|
99 |
+
pred = rnn_make_predictions([input], rnn_model)
|
100 |
+
st.write(pred)
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
elif input_text2 == "DNN":
|
105 |
+
with open("dnn_model.pkl",'rb') as file:
|
106 |
+
dnn_model = pickle.load(file)
|
107 |
+
with open("dnn_tokeniser.pkl",'rb') as file:
|
108 |
+
dnn_tokeniser = pickle.load(file)
|
109 |
+
|
110 |
+
def dnn_make_predictions(inp, model):
|
111 |
+
|
112 |
+
inp = dnn_tokeniser.texts_to_sequences([inp])
|
113 |
+
inp = tf.keras.preprocessing.sequence.pad_sequences(inp, maxlen=500)
|
114 |
+
res = model.predict([inp])
|
115 |
+
if res:
|
116 |
+
return "Negative"
|
117 |
+
else:
|
118 |
+
return "Positive"
|
119 |
+
|
120 |
+
st.subheader('Movie Review Classification using DNN')
|
121 |
+
inp = st.text_area('Enter message')
|
122 |
+
if st.button('Check'):
|
123 |
+
pred = dnn_make_predictions([inp], dnn_model)
|
124 |
+
st.write(pred)
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
elif input_text2 == "LSTM":
|
129 |
+
with open("lstm_model.pkl",'rb') as file:
|
130 |
+
lstm_model = pickle.load(file)
|
131 |
+
|
132 |
+
with open("lstm_tokeniser.pkl",'rb') as file:
|
133 |
+
lstm_tokeniser = pickle.load(file)
|
134 |
+
|
135 |
+
def lstm_make_predictions(inp, model):
|
136 |
+
inp = lstm_tokeniser.texts_to_sequences([inp])
|
137 |
+
inp = tf.keras.preprocessing.sequence.pad_sequences(inp, maxlen=500)
|
138 |
+
res = (model.predict(inp) > 0.5).astype("int32")
|
139 |
+
if res:
|
140 |
+
return "Negative"
|
141 |
+
else:
|
142 |
+
return "Positive"
|
143 |
+
st.subheader('Movie Review Classification using LSTM')
|
144 |
+
inp = st.text_area('Enter message')
|
145 |
+
if st.button('Check'):
|
146 |
+
pred = lstm_make_predictions([inp], lstm_model)
|
147 |
+
st.write(pred)
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
|
bp_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2898ac4c9ef15f477f4bd8ac49b1ae1357b92e6d8867b14c0b05ec7a4ea45149
|
3 |
+
size 4300
|
bp_tokeniser.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5b5110d992f43b2be8ae7213e998f5ed8364e0ea50160bf27a07f8eda3071b5
|
3 |
+
size 4992453
|
dnn_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ce21a6e8697e9ad0f9e6b498af66a3b2bcd1ec166967bb2127f20c5217c8b62
|
3 |
+
size 445643
|
dnn_tokeniser.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9669cc4a7b1a8b6c58f4a41d23044f68f9f4b9e4581796a2c677bfd115f437c7
|
3 |
+
size 4534143
|
lstm_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82ba0fdcd26b5d676861aa045bfdeff5358040cadd386db6b2e01266fcd26512
|
3 |
+
size 41216539
|
lstm_tokeniser.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1741a71670e2bc8397a86ea71f7f6caa146b61bb050cf5e813cdf3ffc22004e8
|
3 |
+
size 4534143
|
ppn_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b2f35d300e2e1e62ba318a5c87325ceaec298f9acd7d8e1d367e663ba049715
|
3 |
+
size 2267
|
ppn_tokeniser.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37aa7ac9ab0c53abd1a1062e78cf9c480fcea66189ed01804e30bf4123a93626
|
3 |
+
size 4848716
|
spam_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13b4fe44be9a489aea7d3b92f011cdbb4e48210d5b59bebd49f7dc1a11420b37
|
3 |
+
size 2255782
|
spam_tokeniser.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ccf3ead030e608406503d2c70eff136b4564b3db13d14f5c8fd290e9a3e6c4e
|
3 |
+
size 290462
|
tumor_detection_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bf07748badd8583c2f9a77f3b20d2a0d36c5e9e6440eb398de4e1e1975b6304
|
3 |
+
size 391811360
|
tumor_detection_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b511ff209422d5b75731fe30d78a6f5b8b4e32e7a04c6c36bfae89a1ee7e65b7
|
3 |
+
size 391803384
|