File size: 6,549 Bytes
03ce4c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0953f1
 
 
 
 
03ce4c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
539f194
03ce4c5
 
 
 
 
 
 
1242be5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr
import torch
import cv2
import numpy as np
import pandas as pd
from scipy.signal import find_peaks, savgol_filter
from collections import Counter
from tqdm import tqdm
import time
import os
import torch
import torch.nn as nn
import torch.fft as fft
import xgboost as xgb
from torch.utils.data import DataLoader, TensorDataset
import time
from models.temporal_fusion_transformer import TemporalFusionTransformer
from models.tcn import TCN
from models.etsformer import ETSformer
from models.bilstm import BiLSTM
from models.respfusion import RespFusion 

def process_video(video_path):
    # Parameters
    roi_coordinates = None  # Manual ROI selection
    fps = 30  # Frames per second
    feature_window = 10  # Window for feature aggregation (seconds)

    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        return "Error opening video file"

    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    # Select ROI
    ret, first_frame = cap.read()
    if not ret:
        return "Failed to read first frame"

    if roi_coordinates is None:
        roi_coordinates = cv2.selectROI("Select ROI", first_frame, fromCenter=False, showCrosshair=True)
        cv2.destroyWindow("Select ROI")
    x, y, w, h = map(int, roi_coordinates)

    prev_gray = cv2.cvtColor(first_frame[y:y+h, x:x+w], cv2.COLOR_BGR2GRAY)
    motion_magnitude, direction_angles = [], []

    frame_skip = 2
    scale_factor = 0.5

    roi = cv2.resize(first_frame[y:y+h, x:x+w], None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_AREA)
    prev_gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        frame_index = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
        if frame_index % frame_skip != 0:
            continue

        roi = cv2.resize(frame[y:y+h, x:x+w], None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_AREA)
        gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)

        flow = cv2.calcOpticalFlowFarneback(prev_gray, gray, None, 0.5, 3, 15, 2, 5, 1.2, 0)
        magnitude, angle = cv2.cartToPolar(flow[..., 0], flow[..., 1])

        motion_magnitude.append(np.mean(magnitude))
        direction_angles.extend(angle.flatten())

        prev_gray = gray

    cap.release()

    window_length = min(len(motion_magnitude) - 1, 31)
    if window_length % 2 == 0:
        window_length += 1
    smoothed_magnitude = savgol_filter(motion_magnitude, window_length=window_length, polyorder=3)

    features = []
    window_size = feature_window * (fps // frame_skip)
    num_windows = len(smoothed_magnitude) // window_size

    for i in range(num_windows):
        start, end = i * window_size, (i + 1) * window_size
        window_magnitude = smoothed_magnitude[start:end]
        peaks, _ = find_peaks(window_magnitude)
        troughs, _ = find_peaks(-window_magnitude)

        features.append([
            np.mean(window_magnitude), np.std(window_magnitude), np.max(window_magnitude), np.min(window_magnitude),
            len(peaks), np.mean(window_magnitude[peaks]) if len(peaks) > 0 else 0,
            np.mean(np.diff(peaks)) / (fps // frame_skip) if len(peaks) > 1 else 0,
            (np.mean(window_magnitude[peaks]) - np.mean(window_magnitude[troughs])) if peaks.size > 0 and troughs.size > 0 else 0,
            Counter((np.array(direction_angles[start:end]) / (np.pi / 4)).astype(int) % 8).most_common(1)[0][0] if len(direction_angles) > 0 else -1,
            np.argmax(np.abs(np.fft.fft(window_magnitude))[1:len(window_magnitude)//2]) / window_size
        ])

    features_df = pd.DataFrame(features, columns=[
        "mean_magnitude", "std_magnitude", "max_magnitude", "min_magnitude", "peak_count", "avg_peak_height", "peak_to_peak_interval", "amplitude", "dominant_direction", "dominant_frequency"
    ])
    print("Features Extracted. Matching Model Keys.")

    X_inference = np.array([features_df.iloc[i-5:i, :].values for i in range(5, len(features_df))])
    X_inference_tensor = torch.tensor(X_inference, dtype=torch.float32)
    

    input_size, hidden_size, output_size = X_inference_tensor.shape[2], 64, 1
    tft_model = TemporalFusionTransformer(input_size, hidden_size, output_size)
    tcn_model = TCN(input_size, hidden_size, output_size)
    ets_model = ETSformer(input_size, hidden_size, output_size)
    bilstm_model = BiLSTM(input_size, hidden_size, output_size)

    weights_path = './models/weights/'
    # Load state dicts for each model
    tft_model.load_state_dict(torch.load(weights_path + "tft_loss_optimized.pth", map_location=torch.device("cpu")))
    print("TFT Model Loaded. All keys matched successfully.")
    tcn_model.load_state_dict(torch.load(weights_path + "tcn_loss_optimized.pth", map_location=torch.device("cpu")))
    print("TCN Model Loaded. All keys matched successfully.")
    ets_model.load_state_dict(torch.load(weights_path + "etsformer_loss_optimized.pth", map_location=torch.device("cpu")))
    print("ETSformer Model Loaded. All keys matched successfully.")
    bilstm_model.load_state_dict(torch.load(weights_path + "bilstm_loss_optimized.pth", map_location=torch.device("cpu")))
    print("BiLSTM Model Loaded. All keys matched successfully.")
    
    
    tft_model.eval()
    tcn_model.eval()
    ets_model.eval()
    bilstm_model.eval()

    model = RespFusion(
    tft_model, tcn_model, ets_model, bilstm_model,
    strategy='stacking',
    meta_learner_path=weights_path + "respfusion_2_xgboost_meta_learner.json"
    )
    print("Respfusion Model Loaded. Detecting Apnea.")
    with torch.no_grad():
        predictions = model(X_inference_tensor).squeeze().tolist()

    def categorize_breathing_rate(pred):
        if pred < 0.5:
            return "Apnea"
        elif pred > 20:
            return "Tachypnea"
        elif pred < 10:
            return "Bradypnea"
        else:
            return "Normal"

    categories = [categorize_breathing_rate(pred) for pred in predictions]
    overall_category = categorize_breathing_rate(sum(predictions) / len(predictions))

    return {"Breathing State per 10s": categories, "Average Breathing Rate": sum(predictions)/len(predictions), "Overall Breathing State": overall_category,}

app = gr.Interface(
    fn=process_video,
    inputs=gr.Video(label="Upload Video for Analysis"),
    outputs=gr.JSON(),
    title="Apnea Detection System",
    description="Upload a video to analyze breathing rate and detect conditions such as Apnea, Tachypnea, and Bradypnea."
)

app.launch()