import pandas as pd
from fasthtml.common import *
df = pd.read_csv(
"ar_en_nutrition.csv",
index_col=0,
)
def create_food_model(df):
# Remove the 'Unnamed: 0' column if it exists
if "Unnamed: 0" in df.columns:
df = df.drop("Unnamed: 0", axis=1)
# Create a dictionary of column names and their types
dtype_map = {"int64": int, "object": str, "float64": float}
# Start with the id column
column_types = {"id": int}
# Add other columns, excluding any id column from the DataFrame
for col in df.columns:
if col.lower() != "id":
column_types[col] = dtype_map[str(df[col].dtype)]
# Create the app with dynamically generated columns
return fast_app(
"data/foods.db",
hdrs=[Style(":root { --pico-font-size: 100%; }")],
pk="id",
**column_types,
)
def update_database(df):
# Create the model based on DataFrame structure
app, rt, foods, Food = create_food_model(df)
# Convert DataFrame rows to Food objects, letting SQLite handle the ID
for _, row in df.iterrows():
row_dict = row.to_dict()
if "id" in row_dict:
del row_dict["id"]
if "Unnamed: 0" in row_dict:
del row_dict["Unnamed: 0"]
foods.insert(Food(**row_dict))
foods.enable_fts(["name", "arabic_name"])
try:
app, rt, foods, Food = create_food_model(df)
update_database(df)
print("Database updated successfully!")
except Exception as e:
print(f"Error updating database: {e}")
items = foods()
print(len(items))
# for item in items[:5]:
# print(item.arabic_name, item.name, item.calories)
# el = foods.search("banana")
# for e in el:
# print(e["name"])
# print(e["arabic_name"])
# print(e["calories"])
# print(e)
# break