|
|
|
|
|
import os |
|
from pathlib import Path |
|
|
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import pandas as pd |
|
from menpo.visualize.viewmatplotlib import sample_colours_from_colourmap |
|
from prettytable import PrettyTable |
|
from sklearn.metrics import roc_curve, auc |
|
|
|
image_path = "/data/anxiang/IJB_release/IJBC" |
|
files = [ |
|
"./ms1mv3_arcface_r100/ms1mv3_arcface_r100/ijbc.npy" |
|
] |
|
|
|
|
|
def read_template_pair_list(path): |
|
pairs = pd.read_csv(path, sep=' ', header=None).values |
|
t1 = pairs[:, 0].astype(np.int) |
|
t2 = pairs[:, 1].astype(np.int) |
|
label = pairs[:, 2].astype(np.int) |
|
return t1, t2, label |
|
|
|
|
|
p1, p2, label = read_template_pair_list( |
|
os.path.join('%s/meta' % image_path, |
|
'%s_template_pair_label.txt' % 'ijbc')) |
|
|
|
methods = [] |
|
scores = [] |
|
for file in files: |
|
methods.append(file.split('/')[-2]) |
|
scores.append(np.load(file)) |
|
|
|
methods = np.array(methods) |
|
scores = dict(zip(methods, scores)) |
|
colours = dict( |
|
zip(methods, sample_colours_from_colourmap(methods.shape[0], 'Set2'))) |
|
x_labels = [10 ** -6, 10 ** -5, 10 ** -4, 10 ** -3, 10 ** -2, 10 ** -1] |
|
tpr_fpr_table = PrettyTable(['Methods'] + [str(x) for x in x_labels]) |
|
fig = plt.figure() |
|
for method in methods: |
|
fpr, tpr, _ = roc_curve(label, scores[method]) |
|
roc_auc = auc(fpr, tpr) |
|
fpr = np.flipud(fpr) |
|
tpr = np.flipud(tpr) |
|
plt.plot(fpr, |
|
tpr, |
|
color=colours[method], |
|
lw=1, |
|
label=('[%s (AUC = %0.4f %%)]' % |
|
(method.split('-')[-1], roc_auc * 100))) |
|
tpr_fpr_row = [] |
|
tpr_fpr_row.append("%s-%s" % (method, "IJBC")) |
|
for fpr_iter in np.arange(len(x_labels)): |
|
_, min_index = min( |
|
list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr))))) |
|
tpr_fpr_row.append('%.2f' % (tpr[min_index] * 100)) |
|
tpr_fpr_table.add_row(tpr_fpr_row) |
|
plt.xlim([10 ** -6, 0.1]) |
|
plt.ylim([0.3, 1.0]) |
|
plt.grid(linestyle='--', linewidth=1) |
|
plt.xticks(x_labels) |
|
plt.yticks(np.linspace(0.3, 1.0, 8, endpoint=True)) |
|
plt.xscale('log') |
|
plt.xlabel('False Positive Rate') |
|
plt.ylabel('True Positive Rate') |
|
plt.title('ROC on IJB') |
|
plt.legend(loc="lower right") |
|
print(tpr_fpr_table) |
|
|