import gradio as gr from gr_nlp_toolkit import Pipeline # Author: Lefteris Loukas # Date: August 2024 # Description: A Gradio interface for the Grεεk NLP Toolkit, which includes Greeklish to Greek conversion, dependency parsing, part-of-speech tagging, and named entity recognition. # Point-of-Contact: http://nlp.cs.aueb.gr/ # Initialize Pipelines nlp_pos_ner_dp_with_g2g = Pipeline("pos,ner,dp,g2g") G2G_PLACEHOLDER = "e.g., H thessaloniki einai mia poli sti boreia ellada" NER_PLACEHOLDER = "e.g., Η Αργεντινή κέρδισε το Παγκόσμιο Κύπελλο το 2022" POS_PLACEHOLDER = "e.g., Μου αρέσει να διαβάζω τα post του Andrew Ng στο Twitter." DP_PLACEHOLDER = "e.g., Προτιμώ την πρωινή πτήση από την Αθήνα στη Θεσσαλονίκη." def greeklish_to_greek(text): if not text: text = G2G_PLACEHOLDER[5:] doc = nlp_pos_ner_dp_with_g2g(text) return " ".join([token.text for token in doc.tokens]) def process_text(text, task): doc = nlp_pos_ner_dp_with_g2g(text) task_mapping = { "dp": lambda token: f"Text: {token.text}, Head: {token.head}, Deprel: {token.deprel}", "pos": lambda token: f"Text: {token.text}, UPOS: {token.upos}, Feats: {token.feats}", "ner": lambda token: f"Text: {token.text}, NER: {token.ner}", } return "\n".join([task_mapping[task](token) for token in doc.tokens]) def dependency_parsing(text): if not text: text = DP_PLACEHOLDER[5:] return process_text(text, "dp") def pos_tagging(text): if not text: text = POS_PLACEHOLDER[5:] return process_text(text, "pos") def named_entity_recognition(text): if not text: text = NER_PLACEHOLDER[5:] return process_text(text, "ner") # Define the Gradio interface def create_demo(): theme = gr.themes.Soft() with gr.Blocks(theme=theme) as demo: gr.Markdown( """ # The Grεεk NLP Toolkit 🇬🇷 This is a demonstration space for our open-source Python toolkit (`gr-nlp-toolkit`), which supports state-of-the-art natural language processing capabilities in Greek. ## Key Features: - Greeklish to Greek Conversion (G2G) - Dependency Parsing (DP) - Part-of-Speech (POS) Tagging - Named Entity Recognition (NER) """ ) with gr.Tab("Greeklish to Greek"): g2g_input = gr.Textbox( label="Enter Greeklish text", placeholder=G2G_PLACEHOLDER, ) g2g_output = gr.Textbox(label="Greek text") g2g_button = gr.Button("Submit") g2g_button.click(greeklish_to_greek, inputs=g2g_input, outputs=g2g_output) with gr.Tab("Dependency Parsing"): dp_input = gr.Textbox( label="Enter text", placeholder=DP_PLACEHOLDER, ) dp_output = gr.Textbox(label="Dependency Parsing annotations") dp_button = gr.Button("Submit") dp_button.click(dependency_parsing, inputs=dp_input, outputs=dp_output) with gr.Tab("Part-of-Speech Tagging"): pos_input = gr.Textbox( label="Enter text", placeholder=POS_PLACEHOLDER, ) pos_output = gr.Textbox(label="POS Tagging annotations") pos_button = gr.Button("Submit") pos_button.click(pos_tagging, inputs=pos_input, outputs=pos_output) with gr.Tab("Named Entity Recognition"): ner_input = gr.Textbox( label="Enter text", placeholder=NER_PLACEHOLDER, ) ner_output = gr.Textbox(label="NER annotations") ner_button = gr.Button("Submit") ner_button.click( named_entity_recognition, inputs=ner_input, outputs=ner_output ) gr.Markdown( """ ## Installation The Grεεk NLP toolkit is available on PyPI for Python 3.9+: ```sh pip install gr-nlp-toolkit ``` ## Github Repository Visit the [GitHub repository]("https://github.com/nlpaueb/gr-nlp-toolkit") for more information, such as documentation and full usage examples. ## About the Project The Greek NLP Toolkit is the state-of-the-art natural language processing toolkit for modern Greek, [developed by the Natural Language Processing Group at the Athens University of Economics and Business](http://nlp.cs.aueb.gr/). It supports named entity recognition, part-of-speech tagging, morphological tagging, dependency parsing, and Greeklish to Greek conversion. This project is part of ongoing research aimed at advancing Greek language processing capabilities.

GitHub https://github.com/nlpaueb/gr-nlp-toolkit
© 2024 The Greek NLP Toolkit. All rights reserved. """ ) return demo # Launch the Gradio interface if __name__ == "__main__": demo = create_demo() DEPLOY_TO_THE_PUBLIC_FLAG = False demo.launch(share=DEPLOY_TO_THE_PUBLIC_FLAG)